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Abstract

This study examines economic growth of Thailand using predictor variables with
different frequencies (yearly, quarterly, and monthly). Mixed Data Sampling (MIDAS) is
approached to combine the enormously different frequency data. Ridge, LASSO, and
elastic net regression are also used to specify factors affecting to Thailand economic
growth. Data have been carefully collected from January 2000 to December 2019, total
20 years. The empirical results show that variables with positive impact on GDP growth
consist of industry value added (INDUSVA), tax revenue (TAXREVEN), electricity
consumption (ELECC), and investment growth (INVEST), while negative impact of external
debt (EXD) on growth also exists.
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Introduction

Economic growth is widely accepted as important priority of all countries that they
have expanded it as much as possible. Gross domestic product (GDP) can be used as
indicator to measure this growth. GDP is market value measurement of all final ¢oods and
produced services in country by specific time period. To calculate GDP, it can be
determined by three primary methods: expenditure approach, output (or production)
approach, and income approach (The Office for National Statistics, 2019). In order to
estimate economic growth and make economic policies in the future, economic
forecasting is considered necessary to predict future condition of economy using a
combination of important and comprehensive indicators.

As GDP is an indicator of economic growth, the forecasting of future GDP from
various factors is made. Hicks (1969) and Grabova (2014) stated that economic growth is
the increase of real GDP or GDP per capita to increase national product measured with
constant prices. Economic growth is influenced by various direct factors for example,
human resources (increasing active population, investing in human capital), natural
resources (land, underground resources), capital increase employee, or technological
advancements. Economic growth is also influenced by indirect factors such as institutions
(financial institutions, private administrations), size of aggregate demand, saving rates and
investment rates, efficiency of financial system, budgetary and fiscal policies, migration of
labor and capital, and efficiency of government. However, it is difficult to assess which
factors contribute the most impact on economic growth. Acemoglu (2009) mentioned that
public expenditure, capital formation, private or public investment, employment rates,
and exchange rates have different impacts on economic growth. It should consider that
these factors can be determined different implications. Some socio-political factors and
events have a major influence on economic advancement (Acemoglu, 2009).

Furthermore, there are several non-economic determinant factors that impact GDP
like government efficiency (Cooray, 2009), institutions (Rodrik, 1999; Acemoslu et al., 2002),
political and administrative systems (Svensson, 2003; Grabova, 2014), cultural and social
factors, geography, and demography (Acemoglu, 2009).

To forecast GDP, various factors are considered in the study, such as financial,

microeconomics, macroeconomics, environment, political, social, health, education,

03 NIEITUIMIIFIND

M] - uvnAnetas iy




ST

2 atuil 1 wiauunsiey - Tquieu 2563

inequality, and poverty. However, there is a different frequency of data available.
Information about real economic sector often appears publicly in form of annual,
quarterly, or monthly reports such as information about economic growth rate, Consumer
Price Index, unemployment rate, and Industrial Production Index. While the most asset
pricing is high-frequency data such as stock market index data in 5 minutes,
15 minutes, daily or monthly data. Therefore, it is a challenge for researchers to use these
data with different time units to forecast real economy.

To deal with different frequency of data variable, this study uses Mixed Frequency
Data Sampling (MIDAS), which is linear regressions allowing weighting functions to match
data properties used.

MIDAS approach proposed by Ghysels et al. (2007) enables to use various
frequencies in a single univariate model. Moreover, MIDAS regression can be operated to
explain a low-frequency variable by using exogenous variables of higher frequency, without
any aggregation procedure and within a parsimonious framework. This approach is typically
used in macroeconomics to describe quarterly GDP fluctuations using monthly data that
are generally available for short-term analysis, such as oil prices, stock prices, and spread
between long and short-term interest rates (Ferrara and Marsilli, 2013). Clements and
Galvao (2008), Marcellino and Schumacher (2010) employed MIDAS approach to predict
macroeconomic fluctuations for the United States and Germany, respectively.

To predict values on different macro variables through forecasts, it is necessary to
handle a large data set of multicollinearities. Moreover, one of the major problems in
linear regression is it tries to over-fit data. There are some regularization methods which
are Ridge Regression, Least Absolute Shrinkage, and Selection Operator Regression (LASSO).
Besides, Elastic-Net Regression is used to overcome problem of over-fitting in Linear
Regression Models. Li and Chen (2014) used LASSO and elastic net regression to extract
important forecasting macroeconomic indicators from 20 different macro variables. Tiffin
(2016) applied elastic net regression to select the best predictors from 19 variables for
predicting GDP in Lebanon.

This paper aims to forecast economic growth in Thailand using predictors with
different frequencies. Mixed Data Sampling (MIDAS) is approached to combine enormously

different frequency data (yearly, quarterly, and monthly). Ridge, LASSO, and elastic net
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regression are also used to specify factors affecting to Thailand economic growth. This
study is a fundamental forecast a step ahead. To get the best knowledge, many studies
have already forecasted Thai economic growth. However, none of it considered as large
determinants, only same frequency is used (Abeysinghe and Rajaguru, 2004; Thianpaen,
Liu, and Sriboonchitta, 2016).

The next section provides methodology used in the research. Section 3 is data

description. Section 4 discusses empirical results. The final section is conclusion.

Methodology
This study utilizes a mixed data sampling approach (MIDAS) to combine the
enormously different frequency data, using ridge, LASSO, and elastic net regression to

identify predictors affecting economic growth.

1. The MIDAS Approach

MIDAS regression constitutes methods and tools for mixed frequency time series
data analysis that allow estimation, model selection, and forecasting. MIDAS lag structure
creates a matrix of selected MIDAS lags. This function can be used to check completion
of high-frequency data.

To forecast quarterly GDP using monthly and annual indicators, mixed data
sampling (MIDAS) approach is proposed by Ghysels and Valkanov (2006), Ghysels et al.
(2007), and Andreou et al. (2010). MIDAS regression is a direct forecasting tool. Dynamic
indicators and joint dynamic between GDP and indicators are not explicitly modeled.
Instead, MIDAS directly relates future GDP to current and laggeed indicators, yielding
different forecasting models for each forecast horizon. This approach is typically used in
macroeconomics to describe quarterly GDP fluctuations using monthly data that are
generally available for short-term analysts.

The standard MIDAS regression for explaining a stationary variable (y;), augmented

with a first-order autoregressive component, is given by

Y. =5 +:BlB(0) )ﬂ(m) +AY .+ &,
(1)
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(m)

where x;"” is an exogenous stationary variable sampled at a frequency higher than y; that

(m)

it observes m times x™ over period [t-1, t]. Term B(3) controls polynomial weights

that allow frequency mixing. MIDAS specification is consisted in smoothing past values of

x™ by using polynomial B) of form,

(2)
where K is number of data points on based regression, L is lag operator that L% x™ =
x(m)t,s/m and by is weight function to take various shapes. Ghysels et al. (2007) implemented

two-parameter exponential Almon lag polynomial such as U=, 0,

_ B exp(Ok+0,k*)
1(0)=0.(66) = > exp(Ok+0k)

(3)
This parameter is a part of estimation problem only influenced by conveyed

) is windows size, K is

information from last K values of high-frequency variable, x."
exogenous specification.

MIDAS model can be estimated using nonlinear least squares (NLS) in a regression

N

of yronto x™, , yield coefficients @ ,,8,, £ ,and P .. The forecast is given by

Ve = ot BD(Lns0) %,
(4)

2. LASSO and Ridge Regression

Ridge regression is very similar to least squares, except coefficients are estimated
by minimizing a slightly adjusted quantity. With least squares, ridge regression seeks
coefficients that fit data well by making residual sum of squares (RSS) as small as possible.
However, regression also seeks to minimize a second term known as a shrinkage penalty,

which is small when regression coefficients are close to zero. This term tends to shrink
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coefficient estimates towards zero. Tuning parameter A controls relative impact of penalty
term. When A = 0, the penalty does not affect, and ridge regression will produce the least-
squares estimates. As A gets larger, the shrinkage penalty impact grows, and the coefficient
estimates will approach zero. Unlike least squares that generate only a set of estimates,
ridge regression will produce a different set of coefficients for each value of A. Therefore,

selecting a good value for A is critical and it will be addressed in cross-validation section

below.
,[;’ =arg rr}ijn{izzl:(Y— X,é)2 + Penalty(,@’)},
(5)
Ridge:
2
Penalty(,[?)zkzp:(ﬁ,) .
j=1
(6)
LASSO:
Penalty(3)=2.3.|3
j=1
(7)

where n is number of observations, and p is number of candidate predictors. LASSO
regression (Least Absolute Shrinkage and Selection Operator) is similar to ridge regression,
but it has a different penalty. With ridge regression, LASSO shrinks coefficient estimates
towards zero. However, in LASSO case, penalty has effect forcing some of coefficients to
be precisely equal to zero when a tuning parameter Ais large enough. In contrast to ridge
regression that may shrink coefficients close to zero, it is never eliminated. Like some of
stepwise approaches outlined above, LASSO includes an element of variable selection

tended to produce a parsimonious model with fewer predictors (Tiffin, 2016).

3. The Elastic Net Regression
Elastic net regression contains a hybrid of ridge and LASSO penalties. The ridge
penalty tends to shrink all coefficients proportionately. For closely correlated variables, it

tends to move coefficients toward one another without choosing any of it. On the other
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hand, LASSO penalty can produce a leaner model by focusing on a small subset of those
variables and discarding the rest. Each approach has benefits depending on data, and there

is no prior reason to prefer one over another.

2 P A2 ~
(Y-x3) +x§ (1-a)(4) +ﬂ , (8)
RIDGE LASSO

n

i=1

Elastic net regression combines strengths of the best selected predictors to provide
a parsimonious model while still identifying closely correlated predictors. The relative
weights of two penalties are determined by an additional tuning variable (Ql). Furthermore,
with ridge and LASSO regressions, different tuning parameters (0L and A) can produce
different sets of coefficients. Therefore, selecting right parameter values is a key (Tiffin,

2016).

Data Description

The purpose of this study is to forecast economic growth of Thailand using
predictors with three different frequencies. Mixed Data Sampling (MIDAS) is approached to
combine enormously different frequency data as yearly, quarterly, and monthly. Ridge,
LASSO, and elastic net regression are also used to specify direct and indirect factors
affecting GDP growth of Thailand.

Data have been collected from January 2000 to December 2019 total 20 years.
The data used in this study consist of quarterly GDP growth and 32 variables based on

empirical study.

Table 1 Data Description

Variables Description Frequency Source
BB Budget balance Monthly Bank of Thailand

Current account balance,
CAB Monthly World Bank
million currency units

CONSUM Consumption growth Quarterly World Bank
Bureau of Trade and Economic

CPI Consumer price index Monthly
Indices of Thailand
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Table 1 Data Description (Cont.)

Variables Description Frequency Source
ECONG Economic growth Quarterly World Bank
U.S. Energy Information
ELECPRO Electricity production Annual
Administration
EXD External debt Annual World Bank
Fossil fuels electricity U.S. Energy Information
FFCAP Annual
capacity Administration
Growth rate of real GDP of
GDP Quarterly World Bank
Thailand
GOVEX Government expenditure Annual World Bank
U.S. Energy Information
HYCAP Hydroelectricity capacity Annual
Administration
The Office of Industrial Economics
INDPRO Industrial production Monthly
of Thailand
INDUSVA Industry value added Annual World Bank
Inflation rate (% per Bureau of Trade and Economic
INFLATION Annual
annual) Indices of Thailand
INTERNET Internet users Annual World Bank
INVEST Investment growth Quarterly The Global Economy
LF Life expectancy Annual World Bank
The Stockholm International Peace
MILITARY Military spending Annual
Research Institute
MS Money Supply Monthly Bank of Thailand
NOEM Number of labors Monthly World Bank
Bank for International Settlements
POLICYR Policy rate Quarterly
(BIS)
POP Population size Annual United Nations Population Division
RETAIL Retail sales index Monthly Bank of Thailand
RETAILYOY Retail sales index Monthly Bank of Thailand
SERVA Services value added Annual World Bank
SET SET index Monthly Stock Exchange of Thailand
STOCKVOLA Stock price volatility Annual Global Financial Development
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Table 1 Data

Description (Cont.)

Variables Description Frequency Source
Taxes on goods and
TAXGS Annual World Bank
services
TAXREVEN Tax revenue Annual World Bank
UNEMP Unemployment rate (%) Annual Bank of Thailand
UNEMP Unemployment rate (%) Monthly Bank of Thailand
Percentage urban United Nations Population
URBAN Annual
population Division
= =y
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Empirical Result
Due to nature of elastic net penalty, it seems to possess good properties of both
ridge regression and LASSO regression. First of all, ridge regression and its penalty have
been estimated. The penalty tends to shrink all coefficients proportionately. For closely
correlated variables, it tends to move coefficients toward one another without choosing.
Second, LASSO regression and its penalty can produce a leaner model by focusing on a
small subset of those variables and discard the rest. To find the best fit model, Akaike

information criterion (AIC) is considered to compare model performance. The lowest AIC

also indicates the best fit model.

Table 4 Estimation Result of Regression Models

Variables Ridge regression LASSO regression Elastic net regression
(Intercept term) 2.6442 2.4032 2.5020
EXD -6.7554 -1.8768 -6.8574
INTERNET -0.3784 - -
ELECPRO 1.3041 - -
ELECC 8.3062 1.5859 4.9187
FFCAP 8.5564 - 3.1197
HYCAP 6.2787 - 0.6554
STOCKVOLA 0.1496 - -
POP 15.7865 - -
URBAN -50.0089 - -31.6077
MILITARY 1.2304 - -
INFLATION 0.0836 - -
INDUSVA 8.5955 9.2778 11.9391
SERVA 1.3807 - -
UNEMP -3.3477 - -2.0822
LF -53.1035 - -54.9761
GOVEX -0.2535 : -
TAXREVEN 11.2811 8.6229 9.2771
TAXGS -0.6258 - -
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Table 4 Estimation Result of Regression Models (Cont.)

Ridge regression LASSO regression Elastic net regression
MS 14.2333 - -
CAB 0.0124 - -
BB -0.0021 - -0.0005
INDPRO -0.0498 - -
RETAIL -3.8486 - -2.2363
RETAILYOY -0.0322 - -
UNEM 1.1105 - 0.5381
CPI 33.9741 - -
NOEM -0.1843 - -
SET 1.4612 - -
ECONG 0.3205 - -
POLICYR -1.2937 - -0.9983
INVEST 0.0964 0.0638 0.1079
AIC 1,694.494 313.675 819.195

Table 4 reports LASSO regression to show the lowest value of AIC, while ridge is
the worst method (based on the highest AIC value). Thus, this study can interpret results
from using lasso regression. The result shows that 5 variables have an impact on GDP
growth. Positive impacts on GDP growth consist of industry value added (INDUSVA), tax
revenue (TAXREVEN), electricity consumption (ELECC) and investment growth (INVEST),
while a negative impact of external debt (EXD) on growth also exists.

According to the result, primary variable that negatively impacts economic growth
is external debt (EXD). The study is consistent with Maestas et al. (2016); the debt variable
is likely to result in a decrease in investment reduction. When debt is increased, the
country has a budget constraint on national expense, thereby decreasing economic
growth. As a result, GDP tends to decrease as well, especially in developing countries like
Thailand. While industry value added (INDUSVA) is the main variable that positively impacts
GDP. It is considered an important determinant of economic growth in exports. As exports
increase, GDP also increases (Ali et al., 2016). Moreover, higher industrial value-added also

represents an increase in margins compared with cost (Barua and Chakraborty, 2006).
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Besides, this study also observes positive impact of tax revenue on GDP. It indicates that
higher government revenue received from tax can generate high economic growth. In the
case of electricity consumption, high electrical consumption can contribute a positive
impact on economy. It can expect that higher energy consumption may result in higher
productivity of people and their well-being. As expected, investment in other countries
can boost economic growth, corresponding to growth theory of Solow (Durlauf, Kourtellos,

and Minkin, 2001).

Conclusions and Discussions

This study aims to investigate and test variables affecting GDP growth. According to
literature reviews, many variables may affect GDP growth with different period (monthly,
quarterly, and annual). Therefore, MIDAS approach is applied to each variable. Then, the
study also specifies factors affected GDP growth by elastic net regression. Elastic net
regression can also solve both multicollinearity and variable selection simultaneously
(from ridge and LASSO regression). The result reported that 5 variables have an impact on
GDP growth. Notably, the main variables that affect external debt. In contrast, tax revenue
is a primary variable that has a positive impact on GDP growth. Therefore, Thai economic
policy must closely monitor and control external debt at appropriate level; otherwise, the
higher debt would harm economic performance. In addition, the tax revenue can increase
economic growth. Thus, the government should impose more tax and use this revenue to
develop overall country.

More relevant factors such as financial, environmental, and pollical factors should
be considered in further model study. Moreover, nonlinear Midas regression is suggested

to investigate nonlinear impact of these factors on economic growth of Thailand.
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