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Abstract

This research aims to develop an Artificial Neural Network (ANN) model for
detecting financial fraud trends from the financial statements of companies listed on
the Stock Exchange of Thailand. By reviewing literature and concepts related to agency
theory, which is associated with the fraud triangle concept and the presentation of
financial statements, the study seeks to detect fraud using the traditional Beneish
M-Score, and advances in artificial neural network technology to overcome the
limitations of auditing information stored in database formats, enabling auditors to use
technology in auditing. Therefore, this research employs an artificial neural network
model to predict fraud quickly and accurately from financial statements as a primary
tool for analyzing and predicting fraud trends. The evaluation results of the model
developed from 2,001 datasets, demonstrate high efficiency. The best artificial neural
network model achieved an overall accuracy of 94.02% and a confidence level of
80.41% after calibration. The analysis of Feature Importance identified the Current
Ratio as having a significant influence on prediction These results indicate that the
developed ANN model is a valuable tool for planning and improving the auditing
process, capable of accurately and reliably predicting fraud in financial statements.
Furthermore, the ANN model may be further developed into an additional internal

auditing tool.
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(Calibration) fa8A1 “bias” wag”weight” LWOIVLUUT @RI UTEANE NMNLALIUN AU A 17U
AUNITAAAIINLT SILUUVBIAINUR ANATA (ILLN UAIIULA 899 59) LALLA UAIIUAINTE

Tumavhunenwiugy ielimnzauiuteyamsasnasduaaunsalnisasivaeulad
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1.2 NM5IATIERANULARDULYRINSEINN Y

st nauekansliiudainisildsuwlaivesaininugaide (Loss) wazan

v

ANasiuglagTI (Accuracy) naeAUNSRNFUMUTILIUTEUNTSISEUS (Epochs) mugui 3

Y

WUl A1ANGadAe (Log Loss) fuwildumsindsinuseunisseuda 20 usul uazen

AnuLaiuglagsIn (Accuracy) fuAanugadeiinuaunaiseun1siseusi 92

Value Training Dynamics: Loss and Accuracy per Epoch
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JUN 3 anuduiussenineanuaydsiazannuuiuglagsiuudarsaunTinEy

1.3 JAT1MN1suaNULstayamedalaunsy (Histogram)

Tassteuszamitsalutunadng Output Layer) fnsimszinmsnsyaresives
“bias” wag “weight” Tutunadws mug‘d‘ﬁ' 4 WU AN “bias” KAAINITNILINYM MBS
MsUSUR eIt uNasNETIlaNILa1299 dau “weight” Sinsnszanesiiasieuiinisusush

MUUTUBALIAULED YT IUNNTVITUNAANS LI UEN

Output Layer

Bias Weight
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2. lwnsngni1suseliuuseansain (Performance Metrix)

a

! I o P | a Y] A a a i
?’nﬂ']']llLL@JNEJWI@EJ?'J@JLWEN@EJ'NL@ EJ'JENI@J LNUINBDN ﬁ]zﬂgﬂﬂisﬁ%ﬁmwmaﬂmww

Usvanmiiey Aedy Confusion Matrix @11135abAyuLBIATOUARLLNEUANAINNTALUNNT

A o 2

MU IuUTIaes ngazuusesnidu 4 dau de 1) Teyanidiwungndaslunaiauan

Y

2) Toyaniuungnaedtuaaiaay 3) TeRana1nlun1sIUUNARIEUIN kae 4) Tornnainly

NsAMUNAIIEAY USING ALl

o . . wuudnaes
NAAWSASHANULLALNAFDU

'
9

Panan  USuneu

foyafisuungniedlunanauin (True Positive: TP) 83 Ass 82 As
foyafiduungniedlunanaau (True Negative: TN) 106 A%q 103 Ass
ToRAnaItuN1ITIMUNAAIEUIN (False Positive: FP) 9 pds 12 ad
YoranaInlun1IIUNAaNEaU (False Negative: FN) 3 Ass 4 %y

Poyatanutulaly Confusion Matrix muguil 5 agviliiAnanudaauneunisiluly

Confusion Matrix of Test Accuracy Evaluation

Predicted Values

Negative (Class 0) Positive (Class 1)

" % 60: False Positive (FP)
d T, & | True Negative (TN)
= v g Type | Error
L z ©
::3 < /:\ False Negative (FN)
2 = 4 True Positive (TP)

S O Type Il Error

U yp

5U# 5 Confusion Matrix 310 Best Model

NVOYAHAANTNITHNUATNAAUAINA1IT A UAINTTAUIAUIUN oY T2 1Y
UseansnmuwuuinasdlasaieUssamiieulaniy
1NAN51N 1 TunSnTa1nTUNISUSLAUUSLENTAIN 4 91U AD 1. AU LAY

Weense 2. Auauna 3. auudede waz 4. anuuiazdu lnen1siasisinamantd

JevatuayuAIALLlNglneTINTRUUTIaeITUsE NS nluddusialy
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A15199 1 nsngUseliulsEansaImLuuIasdlaseneUssa ey

- o n1suFuliigu . ,
nsUsEidiu NN . - NALANAS gnINIsATUIN
fnoy WA
Accuracy 0.9402 | 0.9203 -0.0199 P+ 1IN
Total
oS . TP
= Precision 0.9021 | 0.8723 -0.0298
= TP + FP
= o TP
< Recall (sensitivity) 0.9651 | 0.9534 -0.0117 —
< TP + FN
Specificity 0.9217 | 0.8956 -0.0261 _IN_
TN + FP
& F1-score 0.9325 | 0.9111 -0.0214 | 2 xZrecision x Recal
= Precision+Recall
=
& macro average 0.9400 | 0.9200 -0.0200 | HLzScorel®) 1L - Seored)
@ . TP
S positive_pred value: PPV | 0.9021 | 0.8723 -0.0298 —
e - TP + FP
—r"
E:
g negative pred value: NPV | 0.9724 | 0.9626 -0.0098 _N_
c _pred TN + FN
= " . . Recall
¥ positive_lik_ratio: LR+ 123320 | 9.1375 -3.1945 e
» - - 1 — Specificity
@
E
& negative lik ratio: LR- 0.0378 | 0.0519 +0.0141 L?C.an
P N Specificity

2.1 AVIUUNUEUAEANUTBINSTS
N1sVAdaUAINAINITavRRUUTIaeslunIsyuedeyaluiilinevivunney

[ a a a a 1 1 o | o
WWunisuseiliudszansnninanslunivesninuuiuglagsiu (Accuracy), ANLLUE

I 4

lun133uun (Precision), 8n3111595333UNQNABY (Recall (Sensitivity)), kagAI1UTINIE
(Specificity) munnsneit 1 wudn nsusuauusiaesiliauwivslaesivanauintios
p819l5AMIL N15aRA9BIAIAILTIUNE (Specificity) karANLL U TuN1TTILUN
(Precision) wansliiiuIn1susuAtenadmaliuuuIassinisviuiededanainlunis
FunAaIEUIN (False Positive: FP) 1103y @ saasiiansannisusunsaaiuiiuii oan
HANSENU

2.2 ANANNFLAA

MsATEiAANaNnaillea1na1s1eR 1 wudn dnnsanasvesen Fl-score wag

Macro Average @¢%aUfilIN1TANAIVBIAINUANAATENI1Y ANLI uEluA1TTLUN

(Precision) uagdnI1N13n3333UNYNABY (Recall) aaann1susuiiigu (Calibration) uansl
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< | [ o 4 o v a 1 o [
Windn1susulseeraibianuaiunsalunisduundeyan kiugianas n1sUsulse
LUUT18899190 09N 5NTUSUMALTILAL N SN IANANAYRINITVINUNETENINIAATE
2.3 AIANNULTEND
a ¢ 1 oA N Ay 4' | .
MFIATIERAIAMNL TN ORI M7 1 WUI1 NMTARALYBY Positive Pred
Value: PPV ez Negative Pred Value: NPV #a4310n15U5ULfiau (Calibration) Usuanis
N138AAITOIANNUNTDNOVDIN1TINUE Positive WAz Negative AIUAIAU TINUIYAIILTN
nsusuAe1aviliuuInasslianuiiuglnesIutouaslun1TuE NLEEIEI NARNETILYIRS
wazAaangnyiiueg MsUulTwuuIIaeImsiansanismsieliiuauindeievednis
huelviaadu
2.4 $psraunnuunvduy
a & 1 I oA A Ay v o [ 1 . . .
N1SIATITNAIAIUUNT 8D 07 LAINATSI9A 1 WU A1 Positive Likelihood
Ratio (LR+) MiamasiazAn Negative Likelihood Ratio (LR-) MU unas91nn15UsuLiey
(Calibration) @gvipufisn1sivdsunlaswesnnuuiasidulunisyhuienisiiad uvesnand
. = = v . J 4:4' 1 1 @) o )
Positive Wiatfisuiuaaa Negative. A1 LR+ Nanasuansinauuaziiuvesnisitunedy

Positive 1i1atuase Ao Positive tuanad AnutUasulUainaitusuantanisusunsaiena

AINANIZNURDAINNEINITIINISTYITUNIEVDILUUTA D

3. NM5USZIEUAMNEINITAUUUINADY
miﬂizLﬁummmmammmeﬁaamfuisi?mmmmWiaiuﬂﬁﬁauf (Learning
Curve), HuAl#lAs (AUC), A Log Loss, A1 Brier Score wagn1siUssutitsulsz@nsninnis
uunUszannaulazaINIsUTueU
3.1 MsUszdiumuasatumMaissuivesuuiasd (Leaming Curve)
N133ATIEMMENTIMNEUNTISBUT NaULAENdINITUTUWBUTALLANA Y
\Entles Tnaussaurvesuvuiaedugnnisilnduanasdniesuazizuilndaussouslugp
Asnr9deuNIndy sududyaraiifwaniinisdsudieulddioant yninisindu
wwuassnnuiuluiasyhliuuusiaesdimmumumuiasideiioldunndumugui 6
3.2 nMsUsziulTsAnsnInLuUdIaeeg ROC Curve wag AUC
Area Under the Curve: AUC Faituitldiduld sdnvaznnsvinaueasiadu (ROC)
¥ msnvosUsyansnmussuusiasdunasinmssuunUssnniommn Tnedl AUC h

a1 mneda huuiassiiifeuanysauuy nan153denuiuilalasnugui 7
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Calibrated Model - Learning rate curve
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Calibrated Model - Receiver Operating Characteristic (ROC)
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5UN 7 UsednSnnves AUC naamsuSuieukuuinass

fmﬂg‘uﬁ 7 WU aaann1sUs UL (Calibration) UsEENSN1NU89bUUINADY

FIAILANIUTLANS AN AILINDE DILIAEaNaIAINNBUNISUSULTEUNS DAY 0.98 [WUNAY

Y Y
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3.3 A5UTTHUAMNLN UGV ILUUTI8D9AY Log Loss

TunsUseliuUsEans nMNURILUUTI80In1TILUAYSELAN (Classification) A
A1 Log Loss (Binary Cross-entropy) W11 quaﬁaaqLLamUszﬁwﬁmwﬁqa TagA1 Train
Log Loss, Tuning Loss, kag Test Loss (311 Best Model) ‘Ui’mg@h 0.17098133, 0.21084249

v =€

way 0.16472299 @eazounausyansnmnesusuluanuklugivaswuuitasdlun1svinuie

-

Toyanaaaulaf wszliamvsertilng 0
3.4 anuideiiovesnnuiiazluiuuudiasssae Brier Score
n1sUseiiuANuLTodeneen Brier Score Wudn N1sUTEIIUNSUSUMIBUTDY
WUUT19898¢7 0.068108 luvnueieA Brier Score 3INNNINABULUUIIADI0YT 0.070437
=~ o Y o ) | o9 ¥ a v 1 A ° =1 o 4 o
FeflanulngdiAgeiueg 19Ny liiin eyl uuuinaedimnuadanowas ¥ oy
TumsvhwenadnsileUszendldivfeyanliduaevielinaiuniney Fasusesmnunson

voshuuaesdmunsuszgndldluaniunsaling q laegalunwazinietie

4. NMINATIRANUFIAYVDIRIMYT (Feature Importance)
n9ATITiANdA YRl T lassuteUssaisnlglunisilnedu Taedinng

BesaduananuEAgInlumanudAytes Asusnglunigen 2

A19799 2 5 arnunsnvesdanUsdAgilalunisinau

No. Feature Score
1 CR 0.3852
2 CA TA 0.3054
3 DSRI 0.1958
4 GMI 0.1263
5 SGl 0.1119

91NM15799 2 WU11 Feature 7138 Current Ratio: CR fiA1 0.3852 undudidud 1
wanafapuddlun1sdnnisdunswdvyuieulviminzausdenisviung dusudsluddu

5998917A® Current Assets to Total Assets: CA TA fiA1 0.3054 WaARAIAIAIIUEIA YV

dunindnyuieuniidndiugaderisuivdunsnd sy

Y



MIarsdIAumIanTUszIyYemansunesaulnduns 6(2): 31-50(2567) 46

anUsIeNan1sIve

¥

n1533edlaianiwasnageukuuIIaedlaseieUssamiion (Arificial Neural
Networks: ANN) Gaitfugnfsnuanaisalunisnsaaduuagyhuisnisyaiamisnisdulusy
nsluvesvsEnaangidoulupaiandnnsnduissemelng Inefianuusiugigsdmaliii
Fnenmaasnslfinaluladilumsatuayunszuaunisamadeunnsiuasnsns1ady
n393aldegeliused@nsam (Bao et al., 2017; Jiang, 2021)

[

N v ¢ a dy
N9 oNleINaaNSINNATITUN

o [y

VINUITEDU LU NSAN®IVDY Beneish (1999) 7

(%
Y [

WAILNE2TAN159a3n M-Score WazuAdelay Caouette et al. (1968) IAgafuATlH NS
Annginuuiuuniieranisaimsduazats wagldFunmsatiuayuainuasuves Anderson
& McNeill (1992) Wugfsrnuddyronisliimaiansinmzidoyauariassineuszam
JeuioifindszavsnmlunszurunsasisasulyBuasnismsadunsyain
nMsTeseikadnsuarnisUssifiunuid ugwesuuTans ANN lunnsideil
Lisuansdanudulldlunisuszgndlduuuitaedduanunisaissarinty uidade
Tomaliudennudullilunisiusanssuiunsasvaeunianaduielfiuaau
Tusdlauazanunindeiioveadoyavnanisiu sanfenslideyaasisazlunsmeinsaing
dumanmsnsiunadenlesfuanuideves wssndnn senssay (2564) Adrsransle
Forensic Analytics Tun1snsiaaeun1snasavmadadnisidmaluladuazmaiiniinseideys
asfelval 19y ANN anansarianuaiansalunismsaduuazyiuienismasamenisiiule

28195UsEanSNa B1NTEUIUNITRTIVARULANUU LT DD oAz Y I8 NS 19A 10T Ule

Infugtevuuaziamulunainyu (Kim & Upneja, 2014)

d3UNaN1339Y

Tumﬁffmﬁ'qLﬁuiﬂﬁmsﬂ’wm nagau Usziduussdndain wazdsziduning
UJefievedlasatnouszaviiion (Artificial Neural Network: ANN) Lilensaadunualiiunis
ya3ansnsiiuandeyasunsiuvesuismirinumvuiiaansidoulunaemdnnsnduss
Uszinalng Tasstnguszamifonldfunisesniuuiieiinseviazsuunnginssuiidaund
Fsenavsveniauuiliiunsmainandeyaniesnisuls

nan1svadeULUUiiandlasieUsTamifiesfeyateyaniansiuiitinududeu

a1unsoaguladn wuudnaesiianTuiauLdugT Seuay 94.02 LavauuLgede Seuay

'
) v a

80.41 Fedieinegluszaungs suiinannsuTuiigy (Calibration) vilvilinAuLediui

Y
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wuudnaedaunsavineteyalndiinsendudnvasnuandseenlulafd @y nsnaasy
Ingld ROC Curve wag AUC wansliliud wuudiaesanusadnnisiunisiunedeyaiiu

a v a 1% A & | v a Yy 1 o a a |
UIn @wwdldun15nase) wavdeyanduau (wnldunisase) lnegedivssdnsam du

A o v a

Confusion Matrix 7143 1As18% uuUT a0 IR ouan @AY LA 81A UALLL UE A8 I

Y

;7

(Accuracy) $eway 94.02 AuuLugluA153LUN (Precision) 8@y 87.23 LAYERIINIT
naduiignies (Recall) Yoway 9534 Fudunadniiazviouliiudsdnenmussnisldau
lasarglszarmiienludiunisnsiadunisasanieanisuldeg1eiusedniua n1s
Wasuuwaunanduansdinisvhauvesuusiasmdimsuiudisuiilinnsineduly
agnafimuuiug wafosuasisnsnanufinwann (Brier Score) flanasiliuuusiassiuig

~ oA A = o § v = o Ao w = Y |
fimuundetionndu wasyinlimsulisiauys (Feature) fidrAglunisieusvedlaseiny

Uszamidley Ao Current Ratio: CR Feusvlutianqusnenisdunsndvyuiey nildunyuiony

9

wazdunsndsundedrmnuauladuiimdlunsihlvldlunisesiaaeutyd

Y

HAANE1NN1TITe R U udsdnen nuazauaIAgIeInITitinaluladlasetiy
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