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           This paper looks into the use of principal components from two perspectives.  Regression lines 

are fitted to scree plots to see if they might assist with resolving the number of factors question.  Then, 
the use of the principal eigenvalue and corresponding eigenvector from a classical components analysis 
is examined, with an eye to identifying best test items. 

                 It was found that regression lines may be a useful addition when it comes to determining where 
an eigenvalue scree breaks.  It was also found that the use of item loadings on the first principal 
component is more likely to identify best items than is the process of looking at item-test correlations. 
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 This paper re-visits two measurement topics which have featured prominently in our 
technical literature for the past five decades: the factor structure underpinning a set of test items, 
and the internal consistency of the score derived from a linear composite of the same items.  The 
paper suggests possible enhancements to our use and understanding of the methods on which 
these topics are founded. 
 

The scree test 
The scree test for the number of factors dates back to Cattell (1966).  Cattell reported 

that the process which led to the development of the scree test was one which had him 
extracting the principal components of correlation matrices, and then looking for “…various 
signs…” in the resultant eigenvalues (which he preferred to call latent roots).  Writing in 
response to a request from Current Contents, which cited his work as a “Citation Classic” in 
1983, Cattell wrote: 
    To my delight, a very simple finding presented itself, namely, that if I plotted the 

principal components in their sizes, as a diminishing series, and then joined up the 
points all through the number of variables concerned, a relatively sharp break 
appeared where the number of factors ended and the ‘detritus’, presumably due to 
error factors, appeared.  From the analogy of the steep descent of a mountain till 
one comes to the scree of rubble at the foot of it, I decided to call this the scree test. 

 Is the scree test still widely applied?  Undoubtedly.  In October 2004 I used the 
Google.com search engine, asking it to find Internet-based documents containing the phrase 
“scree test”.  Google returned several hundred hits. 
 I recently had the opportunity to review the work of a PhD student at the University of 
Alberta.  The student was clearly aware of more recent articles on the number of factors 
question (for example, Nandakamur (1994), was cited), but it was the venerable scree test that 
was applied to conclude that the two cognitive examinations used in the research were 
“essentially unidimensional” (Dawber, Rogers, and Carbonaro 2004; Dawber, 2004). 
 Even Tate (2004), in his thorough paper on contemporary procedures for answering 
the number of factors question, compared eigenvalue magnitudes as one of the processes used to 
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suggest factorial structure.  It is apparent that Cattell’s suggestions regarding the study of 
eigenvalues, and the comparison of their relative magnitudes, are still actively applied. 
 A problem of the scree test relates to finding that “sharp break” referred to by Cattell.  
As Hayton et. al. stated (2004 :193): “Although the scree test may work well with strong 
factors, it suffers from subjectivity and ambiguity, especially where there are either no clear 
breaks or two or more apparent breaks.  Definite breaks are less likely with smaller sample sizes 
and when the ratio of variables to factors is low ….” 
 I have spent a bit of time considering this problem.  Table 1 represents part of my 
effort: the table presents scree test statistics for twelve selected data sets, A through L (F1 and 
F2 are the same data sets, and are further discussed below). 
 For each data set, Table 1 indicates the type of test used in the data set (cognitive or 
affective; in all cases, cognitive items were dichotomously scored, while affective items had 
polytomous scoring patterns); the number of items involved in the test, “Nits”; the number of 
test takers, “N”; the value of coefficient alpha for the test as a whole; and the first eigenvalues of 
the test’s correlation matrix.  All correlation matrices had 1s on their diagonal (that is, the 
correlation matrices were not reduced). 
 Extracting the eigenvalues of an unreduced correlation matrix is commonly associated with 
a principal components analysis, a procedure referred to in most texts as a “data reduction” method. 
 Under each eigenvalue is the percentage of total variance accounted for by the 
corresponding principal component.  Since the correlation matrix has not been reduced by 
placing communality estimates on its diagonal, the sum of the eigenvalues will equal Nits, the 
number of test items.  Each percentage is found by dividing the eigenvalue by Nits, and 
multiplying by 100. 
 

Table 1: Scree test statistics for 12 data sets 

Set Type Nits N alpha eigen1 eigen2 eigen3 eigen4 eigen5 eigen6 eigen7 
A aff 100 307 0.94 23.95 4.66 3.31 2.90 2.42 2.31 1.99 
    % 24.0% 4.7% 3.3% 2.9% 2.4% 2.3% 2.0% 

    R2 0.17 0.68 0.77 0.81 0.85 0.86 0.88 
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Table 1  (Continued) 

Set Type Nits N alpha eigen1 eigen2 eigen3 eigen4 eigen5 eigen6 eigen7 
B aff 64 342 0.97 26.17 5.69 3.65 1.85 1.56 1.42 1.32 
    % 40.9% 8.9% 5.7% 2.9% 2.4% 2.2% 2.1% 
    R2 0.15 0.46 0.64 0.83 0.86 0.87 0.88 

C aff 20 3000 0.67 4.12 4.06 0.82 0.81 0.76 0.75 0.72 
    % 20.6% 20.3% 4.1% 4.0% 3.8% 3.8% 3.6% 
    R2 0.36 0.25 0.97     

D cog 40 450 0.87 7.18 2.34 1.45 1.31 1.26 1.18 1.17 
    % 18.0% 5.8% 3.6% 3.3% 3.2% 3.0% 2.9% 
    R2 0.30 0.79 0.98     
            

E cog 36 1638 0.86 6.31 1.53 1.30 1.15 1.08 1.07 1.01 
    % 17.5% 4.3% 3.6% 3.2% 3.0% 3.0% 2.8% 

    R2 0.22 0.85 0.93 0.97 0.98   
F1 cog 30 222 0.79 4.83 1.83 1.54 1.39 1.36 1.26 1.15 

    % 16.1% 6.1% 5.1% 4.6% 4.5% 4.2% 3.8% 
    R2 0.48 0.94 0.97 0.98    
F2 cog 17 222 0.81 4.47 1.60 1.28 1.09 0.98 0.91 0.86 

    % 26.3% 9.4% 7.5% 6.4% 5.7% 5.3% 5.1% 
    R2 0.46 0.90 0.95 0.97    

            

G cog 20 140 0.89 7.36 1.60 1.57 1.26 1.05 0.81 0.75 
    % 36.8% 8.0% 7.9% 6.3% 5.2% 4.1% 3.8% 

    R2 0.35 0.84 0.84 0.89 0.93 0.98  
H cog 70 288 0.90 9.63 3.31 2.22 1.95 1.91 1.73 1.65 
    % 13.8% 4.7% 3.2% 2.8% 2.7% 2.5% 2.4% 

    R2 0.35 0.82 0.92 0.94 0.95 0.96  
I cog 70 288 0.93 12.49 3.93 2.18 1.79 1.77 1.61 1.58 
    % 17.8% 5.6% 3.1% 2.6% 2.5% 2.3% 2.3% 

    R2 0.26 0.72 0.92 0.94 0.95 0.96  
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Table 1  (Continued) 

Set Type Nits N alpha eigen1 eigen2 eigen3 eigen4 eigen5 eigen6 eigen7 
J aff 4 60 0.39 1.93 1.31 0.65 0.11    
    % 48.1% 32.6% 16.3% 2.9%    
    R2 1.00       

K cog 9 53 0.34 1.78 1.51 1.22 1.08 0.92 0.82 0.71 
    % 19.8% 16.7% 13.6% 12.0% 10.2% 9.1% 7.8% 
    R2 0.97 0.98      
            

L cog 60 649 0.86 7.21 1.86 1.58 1.50 1.48 1.42 1.37 
    % 12.0% 3.1% 2.6% 2.5% 2.5% 2.4% 2.3% 
    R2 0.32 0.95 0.98     

 
 Thus far the Table 1 statistics discussed are familiar ones.  To them I have here 
introduced “R2”, being, in this case, the proportion of eigenvalue variance which may by 
explained by fitting a straight line to the scree plot.  R2 is (thus) an indication of the degree to 
which the eigenvalues, when scree-plotted, fall on a straight line. 
 Examples are shown in Figures 1 and 2, where I first used Excel to plot all 36 
eigenvalues from data set E, and then followed by plotting the last 35 eigenvalues from the 
same data set.  Figure 1 shows that a straight line provides a poor fit to the plot; Figure 2 
indicates how the picture changes after the first eigenvalue is omitted from the plot – the straight 
line does a much better job of fitting the data. 
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Figure 1: scree plot for data set E (36 eigenvalues).
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Figure 2: scree plot for data set E (last 35 eigenvalues).
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 Returning to Table 1, the R2 figures for data set E reveal what happens after more 
eigenvalues are removed, one by one.  By the time the first three eigenvalues are dropped from 
the plot, R2 has increased to 0.97, indicating that a straight line fits the (residual) scree plot quite 
well. 
 My thought is that this procedure might have some generalizability, might help to 
interpret scree tests.  Will it?  Time will tell; others will have to try it.  In the meantime, perhaps 
we could compare the use of R2 to other attempts to remove the “subjectivity and ambiguity” 
mentioned by Hayton et. al. (2004). 
 For example, a paper by Dawber, Rogers, and Carbonaro (2004) interprets a scree plot 
in the following manner: “The shape of the scree plot yielded by a principal component analysis 
showed a dominant first component and the difference between the second and third 
components, third and fourth, and so forth were small in comparison to the difference between 
the first and second components, suggesting each examination was essentially unidimensional”. 
 This interpretation strikes me as perhaps falling short of what is required – it is a 
purely verbal description of a scree plot, and seemingly not very complete.  The paper itself 
provided neither a figure with the scree plot, nor a table with actual eigenvalues.  We have no 
means of confirming the authors’ interpretation for ourselves. 
 In Dawber (2004) we find a more quantitative summary of a scree plot; I believe the 
interpretive style used in Dawber’s work follows that recommended by Hambleton et. al. 
(1991): 

A principal component analysis … yielded 14 components with eigenvalues 
greater than 1.0 for the English exam.  The eigenvalue for the first component was 
8.37, and accounted for 12% of the variance.  The difference between the first and 
second eigenvalues was 7.01, while the differences between successive 
eigenvalues were small (0.11, 0.05, 0.04, 0.04).  Further, the ratio between the first 
and second eigenvalues was 6.16, while the ratios of the remaining successive 
eigenvalues were close to 1 (i.e., <1.10).  The results suggest that there is one 
dominant principal component for the English exam. 
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Compare this with my interpretation of the scree plot corresponding to data set F1 in Table 1:  
When plotted on the entire scree plot, with all 30 eigenvalues, a straight line fell 
short of providing a good fit (R2=0.48).  Removing the first eigenvalue from the 
scree plot, and again overlaying a straight line, raised R2 to 0.94, indicating a good 
fit, suggesting that the scree began after the first eigenvalue, and supporting the 
likelihood of a single dominant underlying dimension. 

 Obviously, I found it necessary to use fewer words than did Dawber.  But then, we’re 
not talking about the same data set.  It might well take me more words to summarize what 
happened in, for example, data sets A and B, although I could take a quick stab: in data set A 
the straight line started to snap in after the second eigenvalue (R2>0.75), while in data set B the 
line started to snap in after the third eigenvalue (R2>0.80). 
 Some other features of the statistics found in Table 1: there is an apparent inverse 
relationship between the % values, and corresponding R2 figures: the higher the %, the lower R2.  
And, in general, the straight line overlay seems to snap in place fairly rapidly, the R2 values 
usually start low, but quickly switch to 0.80 or better. 
 I emphasize that I am not suggesting a general rule to the use of this R2-based scree 
plot interpretation.  At most, I suggest it might come to be a useful companion for those who use 
scree plots.  It is certainly easy to compute in Excel: place the eigenvalues in a row, highlight 
the row, and use Excel’s Chart Wizard to make a “Line” chart.  Then, use the Chart drop-down 
menu from Excel’s main toolbar to “Add a trendline”.  One of the options to the trendline is 
“Display R-squared value on chart”. 
 Some readers will desire more information on the data sets shown in Table 1.  All but 
two of them are authentic, that is, from real-life applications of cognitive and affective tests.  
For example, data set A is from a secondary school attitude test used in Puerto Rico.  Data set B 
is from a widely used attitudes-towards-employment instrument developed in the United States.  
Sets H and I are from norming samples for a high-school aptitude test created in New Zealand.  
Data set L is from a basic skills competency test used in the United States. 
 Data sets C and J were made for use in test and measurement classes at the universities 
of Illinois and Southern California, respectively.  The factorial structure of the data in these data 
sets was defined a priori. 
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 All but one of the data sets reflect the work of professional test users, from colleagues 
with years of experience in our field.  The exception is data set K, a cognitive test created by a 
graduate student with little experience. 
 In the process of preparing this paper, I looked at numerous other data sets.  Common 
factor analysis operating guidelines, or “rules of thumb”, suggest we have “large samples”, 
and/or, samples where the ratio of N to Nits, sample size to number of items, is 3 or better.  I 
used these guidelines to filter my pool of data sets. 
 

Coefficient alpha and principal components 
 As the developer of the Lertap classical item and test analysis system (Nelson, 2000), I 
at times receive user questions having to do with coefficient alpha, and with possible methods to 
maximize it. 
 One of Lertap’s standard reports, “Stats1f”, indicates how much a test’s alpha value 
will increase if an item were to be omitted from the test.  Users sometimes employ this 
information to start removing items, one by one, noting the corresponding change in alpha. 
 This procedure often serves to increase a test’s alpha value, but is labour-intensive, 
and generally quite time consuming. 
 Another way to go about improving a test’s alpha value is to plot item discrimination 
figures, lopping off the items with the lowest values.  Kehoe (1995) is one of numerous authors 
who report on the results of this method, finding “… a 30-item multiple-choice test 
administered by the author resulted in a reliability of .79, and discarding the seven items with 
item-test correlations below .20 yielded a 23-item test with a reliability of 0.88!”. 
 I applied this approach to data set F1. 
 Table 2 displays the “item discrimination bands” for the 30 items used by data set F1, 
in a format common to the Lertap 5 Excel application.  The table indicates that four questions, 
p10, p17, p26, and p29 had item discrimination indices, item-test correlations, less than .10.  
Nine questions had item-test correlations less than .20.  Eliminating these nine items {p1, p14, 
p16, p22, p28 and p10, p17, p26, p29} saw alpha change from its original value of 0.79 to 0.81, 
a small increase. 
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Table 2: item discriminations for data set F1 

item discrimination bands 
.00: p10 p17 p26 p29  
.10: p1 p14 p16 p22 p28  
.20: p4 p11 p15 p18 p24 p25 p27 p30  
.30: p9 p13 p19 p20 p21 p23  
.40: p2 p3 p8  
.50: p6 p7 p12  
.60: p5  
.70:  
.80:  
.90:  

 
 Some would suggest that a better method of identifying weak items would involve the 
application of factor analysis.  For reasons which will become apparent later, I prefer to use 
principal components for this task.  I had Lertap 5 extract the first principal component from data 
set F1’s correlation matrix; the resultant item-component correlations are summarized in Table 3. 

Table 3: item-component correlations for data set F1 

P-Comp1 bands 
.00: p10 p17 p26 p29  
.10: p16 p28  
.20: p1 p14 p18 p22 p24 p25 p30  
.30: p4 p11 p15 p27  
.40: p9 p13 p19 p20 p21 p23  
.50: p2 p3 p8  
.60: p12  
.70: p5 p6 p7  
.80:  

.90:         
 



วารสารวิจัยและวัดผลการศึกษา  ปที่ 3  ฉบับที่ 1 มีนาคม 2548 

 11

 A common rule of thumb applied in factor analysis is to use correlations of .30 and 
above to retain items; those items whose correlations with the factor (or component) are less 
than .30 become candidates for omission from the test. 
 In the case under question, data set F1, there are 13 items with component correlations 
below .30.  I eliminated these items from the test, had Lertap 5 produce new test statistics, and 
saved results as data set F2 (seen in Table 1). 
 Coefficient alpha once again came out to be 0.81.   
 In the case of data set F1, little was gained by deleting weak items, no matter which 
method was used to identify such items.  I note, however, that Kehoe (1995) might well have a 
more positive comment; following the theme of his paper, one would think he might suggest 
that I have indeed gained: I now have a shorter, more reliable test. 
 I would take this point, and mention that often the benefit realised by eliminating weak 
items is greater than the 0.79 to 0.81 increase found here in the case of data set F1. 
 Consider, as another example, data set J, corresponding to an affective test.  Table 4 
indicates the item-test correlations for the four items belonging to data set J. 

Table 4: item-test correlations for data set J 

correlation bands 
.00: Q1  
.10: Q2  
.20:   
.30: Q3 Q4  
.40:   
.50:   
.60:   
.70:   
.80:   
.90:   
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 Putting aside the small number of items in this data set, the pattern seen in Table 4 is 
typical of tests with low alpha values.  One might think there’s not much hope for this test as 
half of its items have very low item-test correlations. 
 But look at the item-component correlations shown in Table 5. 

Table 5: item-component correlations for data set J 

P-Comp1 bands 
.00: Q1 Q2  
.10:    
.20:    
.30:    
.40:    
.50:    
.60:    
.70:    
.80:    
.90: Q3 Q4      

 
 Table 5 should revive our interest in this test.  The pattern it displays is almost 
remarkable – we’ve got two really good items, Q3 and Q4, and two weak ones. 
 Lertap’s bands of item statistics are designed to provide a quick summary of a selected 
item or component statistic.  At times the lowest of these bands may contain negative values.  If 
a particular item statistic is less than zero, such as the item-test correlation, or the item-
component correlation, Lertap will position the statistic in the .00: band.  We do not know if an 
item found in the lowest band has a low positive value for the statistic, a zero value, or a 
negative value. 
 But all is not lost; the actual statistics are always provided somewhere in one of 
Lertap’s reports.  Table 6 shows an extract from the “IStats” report, where the complete 
principal components results are found: 
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Table 6: item-component statistics for data set J 

 Q1 Q2 Q3 Q4 
eigens 1.93* 1.31 0.65 0.11 

percent 48% 32% 16% 3% 
p-comp1 -0.31 -0.15 0.94 0.96 

*corresponding alpha = 0.641 
 
 Table 6 indicates that Q1 and Q2 do, in fact, have negative loadings1 on the first 
principal component.  Those who regularly engage in factor analysis will know what to do next: 
form a test which consists of just the strong items, which, in this case, includes Q3 and Q4. 
 On doing this, the resultant test was found to have an alpha value of 0.94.  Out of 
interest, I formed another test, one with items Q1 and Q2, finding it to have an alpha of 0.50, 
and a correlation with the other test, the one with Q3 and Q4, of -0.09. 
 Returning to the question underlying this discussion, how to improve a test’s alpha 
figure: using item-test correlations, or discriminations, to eliminate weak items is a process with 
some promise, but, clearly, a better process is to apply a principal components analysis.  In the 
two examples looked at here, data set F1 and data set J, the principal components process was 
superior in both cases. 
 True, for data set F1 the change in alpha was the same for both approaches.  Both the 
item-test correlation (or discrimination) process and the principal components process saw alpha 
increase from its initial value of 0.79 to 0.81.  However, the point could be made that the 
principal components process led to greater parsimony, that is, to a test with fewer items. 
 The benefit of the principal components process was clearer in the case of data set J, 
where there was a real difference in the patterns suggested by Lertap’s bands of statistics.  
 
 
                                                           

1 Lertap does not rotate the component; as a result, an item’s correlation with the component is 
equal to its loading on the component. 
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 I now draw attention to one more advantage of using principal components, and refer 
back to Table 6. 
 Notice, in Table 6, that the first eigenvalue has an asterisk attached, with a note to the 
effect that the “corresponding alpha” value was 0.641. 
 This output is again from Lertap.  What it says is that, were we to apply the p-comp1 
loadings to the scoring of the test items, we would end up with a new composite score having an 
alpha value of 0.641. 
 Compare this to the original test alpha of 0.39 for this data set.  It would seem there 
would be much to gain by re-weighting the item scores by the p-comp1 loadings—the increase 
in alpha is considerable.  (In fact I doubt anyone familiar with multivariate analysis would really 
go for this idea; we are in the same ballpark as regression weights, and using such weights to 
derive composite scores is a process which is seldom robust.  Besides, we already know that we 
can obtain a much more reliable test by simply eliminating half of the test’s items.) 
 The relationship between coefficient alpha and principal components is provided by 
the following equation: 

α j = p
p − 1

(1 −
1
λ j

)  

 For the p principal components of a correlation matrix, the value of coefficient alpha 
for the jth component is given by the equation above, where p represents the number of test 
items, and λj the corresponding eigenvalue. 
 Applying the equation to the first principal component of data set J, with p=4 and 
λ=1.93, produces 0.641, the result seen above in Table 6. 
 It can be shown that coefficient alpha for the first principal component is the 
maximum possible value which alpha can obtain for any linear composite of the p items 
comprising the test (see, for example, Hakstain and Bay (1972 : 18), Mulaik (1972 : 211), and 
Lord (1958)). 
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 Table 7 compares original alpha values for each data set to the value of coefficient 
alpha corresponding to the data set’s first principal component.  In the table, αo refers to the 
original alpha value, αpc to alpha for the first principal component, and δ to the change. 
 

Table 7: alpha comparisons 

Data set αo αpc δ 
A 0.94 0.97 0.03 
B 0.97 0.98 0.01 
C 0.67 0.80 0.13 
D 0.87 0.88 0.01 
E 0.86 0.87 0.01 
F1 0.79 0.82 0.03 
F2 0.81 0.82 0.01 
G 0.89 0.91 0.02 
H 0.90 0.91 0.01 
I 0.93 0.93 0 
J 0.39 0.64 0.25 
K 0.34 0.49 0.15 
L 0.86 0.88 0.02 

 
 There are only three data sets with alpha changes of any consequence: C, J, and K.  Of 
these three, only data set K represents an authentic testing situation, the other two data sets were 
made for class exercises, and had two factors built into them a priori. 
 I expected to see more in this table, to see greater differences in the alpha values.  For 
the moment I can only note that most of these tests are strong ones, as far as alpha goes.  The 
comparison of the alpha values seen in Table 7 indicates that, by and large, the process of 
adding item scores in a conventional, unweighted manner, is sound, one which could not be 
much improved on.  This is, of course, assuming we are content to use all of the test’s original 
items – it is still possible we could improve on the indicated original alpha values by eliminating 
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items having low correlations with the first principal component.  The chances of improving any 
of Table 7’s αo values are real, as the examples above with data sets F1 and J show.  However, 
when the original alpha values are as high as most of those in Table 7, such work might have 
little payoff (unless the goal is to shorten the test). 

 
Summary 

 The investigation of twelve data sets featured in this paper suggests that the 
interpretation of scree tests might be assisted, might be made more objective, by fitting a 
straight line to the plot of eigenvalues, and then using R2 to indicate where the scree begins.  It 
was found that such a line will often seem to “snap in”, with R2 suddenly jumping to values in 
excess of 0.80 as eigenvalues are removed, one by one, from the plot. 
 It was also suggested that the use of item-test correlations to eliminate items from a 
test, with an eye to improving alpha, was not as beneficial as was eliminating items on the basis 
of their correlation with the first principal component. 
 A comparison of alpha values was undertaken to investigate the difference between a 
test’s original alpha value and that which would result from re-weighting item scores using item 
loadings on the first principal component.  It was found that tests with high original alpha values 
would not benefit from such re-scoring.  
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