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Forecasting with Bayesian VARSs: Does Larger Mean Better?
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Abstract

Conceptually, the impressive forecasting performance of the Bayesian VARs may be

further improved by expanding the number of variables into the models. This paper compares the
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forecasting performance of a large 131 variable Bayesian VAR to much smaller models. Our
paper gives especially careful consideration to the effect that a hyperparameter governing the
overall tightness of the prior distribution can have, since the performance of a Bayesian
regression can be so affected by it. Our results support the idea that larger Bayesian VARs
perform better than smaller ones. However, when the hyperparameter of the prior distribution of a
smaller model is carefully chosen, the improvement in performances of larger models is not as
impressive as previously thought. Even a 3-variable model with an appropriately chosen

shrinkage parameter will produce much better forecasts than those reported in the literature.
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1. Introduction

In forecasting macroeconomic variables, Bayesian VARs have an excellent record of
performing well in the literature. For example, Robertson and Tallman (1999) report that various
Bayesian VAR specifications outperform unrestricted VARs, while Litterman (1986) shows that a
Bayesian VAR outperforms an ARIMA, a univariate AR, and the best known commercial
forecasting services in out-of-sample forecasting.

According to Litterman(1986), there are at least two advantages to using Bayesian VARs
over other nonstructural econometric models. First, since there are many relationships among
macroeconomic variables not fully understood by economists, and Bayesian VARs, which allow
some uncertainty over the true structure of the economy, give better forecasts than other models
that are fully based on just a single economic structure. Second, under situations of a limited
observations, Bayesian VARs allow the incorporation of more information. A larger number of
parameters can be fitted into the model by assigning appropriate weights to the prior information.

With these advantages, one may argue that larger Bayesian VARs can outperform

smaller models in forecasting. Since the exact structure of the economy is not known and the



problem about the degrees of freedom is ameliorated, larger Bayesian VARs seem to have an
advantage over smaller ones.

Recent forecasting literature is also supportive of the practice of incorporating a large
number of variables into models. Many methods have been proposed to allow this practice. These
include, for example, the dynamic factor models of Stock and Watson (2002a) and Forni, Halli,
Lippi, and Reichlin (2000), and the factor-augmented VAR of Bernanke, Boivin, and Eliasz
(2005). There is a lot of evidence demonstrating that this practice improves the forecasting
performances of the models. See, for example, D’Agostino and Giannone (2007), Bernanke and
Boivin (2003), Stock and Watson (2002b), and Forni, Halli, Lippi, and Reichlin (2003).

Banbura, Giannone, and Reichlin (2008) (henceforth BGR) show that the method of
Bayesian VAR admits a large number of endogenous variables. They investigate empirically
whether this practice is desirable. According to the authors, a large Bayesian VAR with 131
variables performs better than smaller models with 3, 7, and 20 variables in out-of-sample
forecasting. The largest model clearly outperforms the two smallest ones, its forecasting
performance was however, matched by the model with 20 variables.

The Bayesian VAR estimator, however, depends on a hyperparameter determining the
relative weight given to the prior information, and as a consequence the out-of-sample forecasting
performance of a model is influenced by this hyperparameter as well. BGR's findings therefore
are based on the particular way that they determine the value of this hyperparameter. We do not
find the BGR's method the most natural way of setting this value, and there is no reason to believe
that their results will be robust if this parameter value is chosen in a different way. In section 3,
we show that if we assign different values to this hyperparameter, larger VARs of BGR may not
outperform smaller ones.

This paper first determines a suitable hyperparameter value for each model, which makes
the most out of each model given our pre-evaluation period. Given a model and a forecast
horizon, we find the hyperparameter value that minimizes the magnitude of out-of-sample

forecast errors in a part of the pre-evaluation period. After that, we assign this suitable value to



that model during our out-of-sample assessment in an evaluation period. This is shown in section
4. Our result in this section supports BGR's finding that larger models perform better in the
overall picture. However, the performances of the larger models are not dramatically different
from that of the smallest model.

We realize that the suitable hyperparameter value can vary over time. The time-varying
hyperparameter may affect different models in different magnitudes. To make our study more
robust, we extend it out in two additional ways. First, we allow the suitable hyperparameter value
of each model to change every 10 years. For each additional 10 years of observations, we re-
calculate a suitable hyperparameter value for each model. After that, we use this hyperparameter
value in making forecasts for the next 10 years, at which point we again re-calculate a new
hyperparameter value. We assess the performances of Bayesian VARs under this practice. The
result of this is shown in section 5. Contrary to our expectation, this practice does not improve the
forecasting performances of any model specifications.

Second, we apply an updating scheme for the hyperparameter value. With additional
data, we calculate the effect of a small change in the value of the hyperparameter. If the change
signals an improvement in the forecasting performance of a model, a new hyperparameter value is
applied to the model for making the forecast for the next period. Section 6 reports the result from
this experiment. It shows that our updating scheme marginally improves the forecasting
performance of each model specification.

Section 2 shows the details of the model and the estimation method used in this paper,

and section 7 concludes the paper.



2. Estimated Model

We estimate the same Bayesian VARs as BGR. Let ¥, =(y,, y,, ... ¥,,,)' be an mx1

column vector of m endogenous variables in period 7. The reduced form of the VAR is:

Y,=A47Y +47Y ,+.+4Y +c+U, (1)

! p
mx1
mxl mxm mx1l  mxm mxl mxm mxl mx1

'
m,t

where ¢=(c,...,c,)" is the vector of constants, and U, = (u,, ... u is the vector of

unknown disturbances. We assume that:

U ~N(0,¥),

X X
mxl mxl mxm

where the time-invariant matrix ¥ is a positive definite matrix.

Let X, = (Yt'_1, e Yt_ » ,1)" be a column vector containing p lags of Y, and a constant 1.

With observations ¢ =1,...,T, we can rearrange the VAR from (1) into:

Y=XB+U, (2)

Txm Txk kxm  Txm

where ¥ =(Y,,...,Y;)" is the matrix of dependent variables, X = (X,,..., X;)" is the matrix of
independent variables, B =(4,,...,4 p,c)' is the matrix of unknown coefficients,
U=U,...,U,)" is the matrix of disturbances, and k = mp+1 is the total number of independent
variables. Let u be the column vector obtained by stacking the columns of the disturbance matrix

U from (2). The above assumption on U, is equivalent to:

u~N(O,¥® 1),

Tmx1 Tmx1 mxm

where & represents the Kronecker product, and 7 is an identity matrix.



With the seemingly-unrelated-regressions (SUR) structure, the efficient estimator for B is

the same as an unrestricted OLS estimator, which is:

B=(X'X)'(X'Y). 3)

A major problem with this estimator is that increases in the number of endogenous
variables m or the number of lags p used in the model, while hoding the number of observations T
finite, render the estimator more unreliable or even uncomputable. Bayesian VARs help avoid
this problem.

According to the Bayesian VAR approach, the coefficients in the model are treated as
random variables, with given means and variances. The prior information about these means and
variances is imposed, and we update this information with the sample observations, using Bayes'
law. The end result is the posterior distribution of the coefficients with estimated means and
variances. With suitable adjustment to the parameter of the model, there is no requirement on the
total number of observations. This is because these observations are only used to update the prior
distribution.

The main issue of implementing Bayesian VARs is about the specification of prior
distribution. Litterman (1986) suggests imposing a form of prior distributions, generally referred
to as a “Minnesota prior”. The prior puts the means of the coefficients at the point that makes Y

t

be a vector of univariate random walks, i.e. the means areat 4, =/, and 4,,...,4 =0 It

D mxm *

may or may not allow for drift. The coefficients are also uncorrelated with each other, with prior

variances given by:

2 l=]5

otherwise,



where (4,); is the ij-th element of the /-th lag coefficient matrix 4, 420 is the
hyperparameter determining the overall tightness of the distribution around the random walk,
(Tl.z , i = 1,...,;m, is the variance of disturbance term of the variable y,, in the VAR, and 7 € (0,1]
is another hyperparameter, reflecting the relative importance of other endogenous variables j # 1
in accounting for the variation of variable i. The prior on the intercept ¢ is diffuse, i.e. the
variance is very high.

Recall that a variance close to zero indicates the distribution is very tight around the
mean value. Lowering the value of A4 toward zero means tightening the prior distribution toward
the random walk. The term [* is added to reflect that the longer lagged variables should each
have a progressively smaller effect on the current variation of each variable, i.e. that the
coefficients in front of these variables should be tightened more toward zero. The hyperparameter
7 has the same function as /*, but for other endogenous variables j # i. It captures the idea that
in explaining the variation of a variable, own lags are more important than lags of the other
variables. At last, the ratio 0'1.2 / O'jz. is used to account for the difference in the units of
measurement of different variables i and j. For more detailed discussion on the prior variances,
see Litterman (1986) or Robertson and Tallman (1999).

Early Bayesian VARs assumed the covariance matrix W to be diagonal, fixed, and
known. This is considered to be very restrictive. The prior distribution imposed in this model, as
recommended by Kadiyala and Karlson (1997), is assumed to be a Normal-(Inverted)-Wishart,

which has the form:

b \\P~N(6,W®g) and ¥ ~iW(¥,a), (4)

kmx1 ~ mxm kmx1 mxm

where b is the column vector obtained by stacking columns of the matrix B from (2). The degree
of freedom of the inverted-Wishart distribution is set at & = m + 2. This makes the prior mean

and variance of the coefficients to be E(b)=b and var(b)=¥ ®Q.



Following Kadiyala and Karlson (1997) and BGR, the parameters of the distribution in
(4), 6, Q , and 1'G , are chosen to match the Minnesota prior. The parameter b is obtained by

stacking columns of the matrix B , given by:

diag(o,,...,0,)
R — 0
kén - (k—=m—=1)xm ?
. b..b, |

where diag(o,,...,0,)) is an mxm diagonal matrix with values o,,...,0, along its main
diagonal, @, i=1,...,m, can be either 0 or 1, and bl. ,i=1,...,m, is a constant or zero. Originally,
Litterman sets each o, equal to 1. However, following BGR, it is more appropriate to set this

value at 5/. = ( for any mean-reverting variable j.

The parameters ¥ and Q are set to be:

¥ =diag(c},...,c.),

mxm

and

~ 1 1 1 1 1 1
Q= 1% -diag| —,....—; yes . yeees ; , (5
ok ol o 2 .0f plol’ T ptol e

where & is a very small number. These parameters make the prior variance of the coefficients,
var(b) = YeQ , follow the Minnesota prior, with the one exception of the hyperparameter 7,
which must be equal to 1 (See Kadiyala and Karlson, 1997, or Robertson and Tallman, 1999, for

more details). In practice, each parameter O'i2 is set to be the variance of the OLS residual from a

univariate autoregressive model of order p of the variable y, .



The posterior distribution of this model is also Normal-(Inverted)-Wishart, given by:

b|\P,Y~N(6,\P®g) and ‘P|TY~1'W(‘T’,T+05), (6)

kmx1 "~ mxm Txm kmx1 mxm mxm

where Q=(Q"'+ X' X)™", D is obtained from stacking columns of the matrix B, given by:
B=(Q'+X'X)(Q'B+X'Y), (7)
and ¥ is given by:
P=Y'Y-BQ'+X'X)B+B'Q'B+V¥. (8)

Normally, the posterior mean b is used as the point estimate of the model.
With the OLS estimator in (3), the estimator of the posterior mean from (7) can be

rewritten as:
B=Q"'+ X' X)(Q'B+(X'X)B). (9)

The estimator in (9) looks similar to a weighted average between the prior mean B and the OLS
estimator B of the model. It is actually a shrinkage estimator that shrinks the OLS estimate
toward the prior mean, which is the random walk in this case. Since A4 determines the magnitude
of the matrix Q, setting different values of A is equivalent to assigning different relative
weights to the prior information. In one extreme, if 4 =0, we give the whole weight toward the
prior information. If 4 =400, we give the whole weight toward the OLS estimator.
Mathematically, the main problem with the OLS estimator (3) is the singularity of the
matrix X 'X . The posterior mean of the Bayesian VARs as in (9) avoids this problem by

summing the diagonal matrix Q' into the matrix X 'X . This technique produces a feasible and
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more reliable (less variance) estimator when the number of parameters is too large relative to the

number of observations.

3. Performances with Different Hyperparameter Values

The main method we use in evaluating the performance of each VAR specification is the
out-of-sample assessment. We follow BGR’s practice closely. The data set is of Stock and
Watson (2005), which have 132 monthly macroeconomic indicators running from January 1959
to December 2003.

Let }ii‘,‘ﬂf ) =( )31(’; +/;14)z j}fn” t’f,:‘t)' denote the point estimate of the /-steps ahead forecast
obtained from the model 4 with the hyperparameter value A . The point estimate of the one-step
ahead forecast is computed from:

YA(;M) '— X 'BwA , (10)

t+1t t+1
where B“? is the posterior mean of the coefficients from the model 4z with the
hyperparameter value A . For the case of p > h > 1 that we consider, we can recursively construct

a matrix of independent variables X t(fhl’: ), given by:

X(/l,l) — (YA(/JJ) ' f}(#,/{) ',Y I Y ' 1)', (11)

t+hlt t+h=1lt 200 Lo t o Lihop >

using the forecasts Yt(f,;fll)t, - Yti’l“f) and the sample observations Y,....Y ,- The point
estimate of the A-steps forecast, then, is computed from:
)9(/4,/1) ‘= YW plud) (12)

t+hit t+h|t

The random walk is used as our benchmark model. The estimator can be obtained by

setting A equal to 0, which makes the /-steps ahead forecast from this model to be the same
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across all model specifications g. We use Y, Y

1+ to denote the A-steps ahead forecast from this

benchmark model. Most of the parameter O, are set to be 1, except for some stationary variables
specified by BGR, of which &, are set to be 0 (See the last column of the Appendix C).

The out-of-sample assessment is conducted for forecast horizons 4 equal to 1, 3, 6, and
12. Let £, and ¢, denote the position of January 1971 and December 2003 in the data set. For
each forecast horizon /4, we compute I}[i’;lf ) in each period t = 7, — h, .., t,— h (396 times). The
order of the VAR is p = 13. The parameters and posterior mean in each model for each ¢ are
computed from the most recent 10 years of sample observations up to time ¢ (Rolling scheme, 120
observations). We set the small number &, the parameter governing prior variances of the
constant terms in the matrix € in (5), to be 107,

The forecasting performance is measured in terms of out-of-sample Mean Squared

Forecast Error (MSE). For the model 4, the value A, the forecast horizon 4, and the variable i,

we have:

1 t—h

— =Py (13)
tl —to N 1 t;h(yz,t-%—h yl,t+h\t)

(u.A) _
MSFEl.j7 =
The results are reported for MSFE relative to the benchmark model “Random walk with drift”,

given by:

MSFE%"

RMSFE“" = f
’ MSFE)

(14)

A number smaller than one for RMSFE[(}’ *) implies that the model x4 with value A performs
better than the random walk.

The variable of interest i are 1) employment (EMPL), measured by the number of
employees on non-farm payrolls, 2) consumer price index (CPI) representing the price level, and

3) the Federal Fund Rate (FFR) representing the monetary instrument.
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Following BGR, there are 4 VAR specifications 4, which are:
1. SMALL. There are only 3 variables of interest: 1) EMPL, 2) FFR, and 3) CPL
2. CEE. This is the model of Christiano, Eichenbaum, and Evans (1999). There are 7
variables, 3 as in SMALL, and additionally 4) index of sensitive material prices, 5) non-borrowed
reserves, 6) total reserves, and 7) M2 money stock. (I believe this should be its own paragraph,
renumber 2 &3 below)

3. MEDIUM. There are 20 variables, 7 as in CEE, and additionally 8) personal income,
9) real consumption, 10) industrial production, 11) capacity utilization, 12) the unemployment
rate, 13) housing starts, 14) producer price index, 15) personal consumption expenditures price
deflator, 16) average hourly earnings, 17) M1 money stock, 18) Standard and Poor’s price index,
19) Yields on 10-year US Treasury bond, and 20) effective exchange rate.

4. LARGE. This specification includes all indicators in the data set, except for the spot
market price index of all commodities (PSCCOM).

We report our first out-of-sample assessment result in Table 1, using the same
hyperparameter values as in BGR. That is A = for = SMALL, A =0.262 for = CEE,
A=0.108 for = MEDIUM, and A =0.035 for x= LARGE. This result is qualitatively
similar to Table 1 of BGR. It can be seen clearly that larger models perform better than smaller

ones.
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Table 1: BVARSs different A4, Out-of-Sample Relative MSFE, 1971 — 2003

SMALL CEE MEDIUM LARGE

EMPL 1.02 0.65 0.54 0.45

h=1 |FFR 1.65 0.90 0.79 0.75
CPI 0.81 0.55 0.51 0.51

EMPL 0.85 0.63 0.50 0.37

h=3 |FFR 1.57 1.12 0.96 0.92
CPI 0.60 0.43 0.40 0.40

EMPL 0.90 0.79 0.66 0.51

h=6 |FFR 1.84 1.30 1.31 1.24
CPI 0.59 0.44 0.37 0.40

EMPL 0.84 0.96 0.87 0.81

h=12 |FFR 2.48 1.49 1.56 1.80
CPI 0.74 0.60 0.44 0.45

A 0 0.262 0.108 0.035

BGR assign hyperparameter values to keep the in-sample fit of all models in the pre-
evaluation period to be the same, for the forecast horizon 4 = 1. Specifically, let 7, denote the
position of December 1969 in the data set. Define the in-sample 1-step ahead mean squared

forecast errors (msfe) for a model 4, a hyperparameter value A, and a variable i as:

T,-1

msfe;"" = ﬁ;(%ﬁf; Vient )2 :
Note that yl y H‘[ is the in-sample forecast (Estimated value) for Visu within the period from
January 1960 (t = 1) to December 1969 (t=T,).

Next, estimate the unrestricted OLS VAR of the SMALL model using the data from

January 1960 to December 1969, and figure out the in-sample fit (Fif), given by:

A
zmsfe(# )

) (0) ’
iel msf & 4=SMALL, A=+

where [ = {EMPL, FFR,CPI} is the set of variables of interest.
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At last, for each model u # SMALL , determine using a grid search the hyperparameter

AHF that gives the in-sample fit of the model closest to the in-sample fit of the unrestricted

i(ﬂﬂFit)

OLS VAR. Specifically, the hyperparameter can be defined as:

1 msfe™?
- Ly e

AU = arg min
3% msfe,

A

We see the way BGR set the hyperparameter value biases against small models. First,
note that the SMALL Bayesian VAR of BGR is actually the unrestricted OLS VAR. This is
because the hyperparameter of the model is set at A =+400. The SMALL model does not benefit
from shrinkage estimation at all. Next, observe that larger models will be assigned lower values
of the hyperparameter A . This is a usual result as a larger OLS model provides a better in-sample
fit to the sample observations. To set the in-sample fit at a given level, this model must be pulled
away more from its OLS estimate. However, since the shrinkage estimator improves the
forecasting performance of a model by avoiding the problem of overfitting into the sample
observationsl, this way of assigning the hyperparameter values provides more benefits to larger
models.

To show this empirically, we set up a new out-of-sample assessment that assigns the
same hyperparameter value across all model specifications. Each hyperparameter value
A =0.035,0.108, and 0.262 is applied to all specifications in this assessment. Everything else
stays the same. Table 2 reports the relative MSFE under this new assessment.

Comparing Table 2 to Table 1, we can see an obvious improvement in the performance
of small models. Even the smallest models can benefit from shrinkage estimation. The SMALL is
a 3-variable VAR with 13 lags, which results in 40 coefficients to be estimated per equation

including the constant term. It is estimated with 120 observations each time. The smallest amount

' Zha (1998) provides a good discussion on this point.
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of shrinkage in this experiment, A =0.262, can remarkably improve the forecasting
performances of this model.

The obvious improvement of the forecasting performances for larger models disappears.
This point is apparent for the hyperparameter values 4 =0.108 and A =0.262. Especially
noteworthy is that for the case of fixing the value at 4 =0.262, the SMALL model outperforms
other larger models in the overall picture. This suggests that the value of hyperparameter 4 must

be chosen more carefully.

4. Performances with Suitable Hyperparameter Values

In this section, we consider a procedure for choosing a “suitable” hyperparameter value
for each model based on a training sample. We choose the value that leads to the minimum
relative MSFE of the variables of interest in an out-of-sample assessment. The observations up to
December 1980 are employed to figure out each suitable hyperparameter value for a given VAR
specification g and a given forecasting span /. After that we will assess each model with this

hyperparameter value, using our evaluation period from January 1981 to December 2003.
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Table 2: BVARs same A, Out-of-Sample Relative MSFE, 1971 — 2003

J.=0.035 SMALL CEE MEDIUM | LARGE
EMPL 0.64 0.61 0.52 0.45
h=1 |FFR 1.00 0.95 0.87 0.75
CPI 0.57 0.51 0.51 0.51
EMPL 0.63 0.56 0.48 0.37
h=3 |FFR 1.06 1.03 1.02 0.92
CPI 0.47 0.38 0.38 0.40
EMPL 0.73 0.63 0.58 0.51
h=6 |FFR 1.11 1.11 1.28 1.24
CPI 0.46 0.34 0.34 0.40
EMPL 0.93 0.71 0.72 0.81
h=12 |FFR 1.22 127 1.56 1.80
CPI 0.51 0.40 0.38 0.45
4 =0.108 SMALL CEE MEDIUM | LARGE
EMPL 0.54 0.59 0.54 0.51
h=1 |FFR 0.96 0.86 0.79 0.75
CPI 0.55 0.51 0.51 0.55
EMPL 0.49 0.55 0.50 0.40
h=3 |FFR 1.08 0.94 0.96 0.94
CPI 0.47 0.39 0.40 0.46
EMPL 0.55 0.66 0.66 0.54
h=6 |FFR 1.18 1.03 131 1.33
CPI 0.48 0.37 0.37 0.47
EMPL 0.65 0.76 0.87 0.96
h=12 |FFR 1.29 1.21 1.56 1.86
CPI 0.55 0.47 0.44 0.59
1=0.262 SMALL CEE MEDIUM | LARGE
EMPL 0.57 0.65 0.66 0.65
h=1 |FFR 0.92 0.90 0.85 0.82
CPI 0.55 0.55 0.54 0.62
EMPL 0.53 0.63 0.63 0.47
h=3 |FFR 1.14 1.12 1.04 1.05
CPI 0.48 0.43 0.44 0.51
EMPL 0.60 0.79 0.82 0.62
h=6 |FFR 1.29 1.30 1.51 1.49
CPI 0.50 0.44 0.39 0.52
EMPL 0.65 0.96 1.10 1.09
h=12 |FFR 1.50 1.49 1.85 1.96
CPI 0.59 0.60 0.49 0.69
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In searching for a suitable hyperparameter value, let 7, and 7, denote the position of
January 1971 and December 1980 in the data set, respectively. For a forecasting span
he{l,3,6,12} and an arbitrary hyperparameter value A, we can compute a forecast ﬁ(fh’l/? for
each period 7 =7, —h,...,7, —h (120 times), using the same setting as in the previous section (p
= 13, rolling scheme with 120 observations, & = 107'°). These point forecasts can be used to

compute MSFEi(’Z"i) and RMSFE&”Z} from (13) and (14), for each variable of interest i. Let

T Vh(” A = z RMSFEZ.(”h‘ A denote our target variable, which is the sum of relative MSFE of our

iel
three variables of interest. Note that each relative MSFE does not depend on the unit of
measurement of each variable, since it is a (xx ? xx) relative term. We find the suitable
hyperparameter value A for each specification g and each forecast horizon 4 using a grid

search such that:

A;' =argmin TVh("j) . (15)
A

Since there is no natural upper bound for the hyperparameter A, a good grid search for
A} should cover a wide range of possible values between 0 and +o0. To avoid this, we calculate
the derivative 0T Vh(” A / O to help search for each hyperparameter value A;. This allows us to
search for the value A, in steps, and helps reduce the task.

From (13) and (14), we have:

oTV*»  OMSFEY:) o N OMSFEYY [o4 N OMSFEWL) |84

; (16)
oA MSFE 1o, , MSFES), MSFEQ, ,

where for each variable i € I, { EMPL< CPIL, FF R},
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OMSFEG® 1 A P
o4 T, -7, +1,57 o4 Yiesn ™ Visen ) >
1 gy . @‘}(ﬂi) (7)
- = Z —2()/- _ s ) heehle
T, -7, +1.570 VANV

Given an m X n matrix Z, we use 0Z / OA to denote the gradient matrix of Z with respect
to 1. The gradient matrix 6Z/ O has the same dimension as Z with 0z, / O as its ij-th
element, where z; is the ij-th element of Z. This is the same for a gradient vector 82/ 04 of an
mx1 vector z. The value of 6)71(’; Jj‘)t / oA in (17) can be taken from the gradient vector

oy wh / o1 , which, according to (12), can be written as:

t+h|t

(o747 Jor) =(ax D [ox) BUD + x40 (6B“? [07), (18)

t+ht t+hlt t+hle
where 85“””/6/1 is given by’:

OB fafl = (G ey xw ) (a1 fof)(BW - B#0). (o)

o (u,4)
Yt+h|t

We can compute the gradient vector O / oL recursively, using (18) and, according

to (10) and (11), the following equations:

(ex > Jod) = x,,, (6B*“"[07), (20)
and
ox/;) [or= ((aﬁy;;?t [8d)" ... (ex%? [o) ngm))' . 1)

* See the Appendix A for the derivation of 8]?“"’1) / o4 in (19).
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We perform a grid search to find the values of A, for each forecasting horizon 4 and
each model specification g£. We search for A;° with 3 decimal places, which makes our grid
search perform 4 steps as follow :

1. Calculate the values of target variables 7' Vh(” ) and gradient 0T Vh(” A / O/ for each
of 11 values of /{, which are 0.001 and 1,2,...,10. Figure out the possible region of the
hyperparameter value A, ‘ Let A, denote the lower bound of this region.

2. Calculate the values of target variables T Vh(” ) and gradient 0T Vh(” A / O/ for each
of 9 values of /i, which are A4,+0.1,4,+0.2,..., 4, +0.9. Figure out the possible region of the
hyperparameter value A, . Let A, denote the lower bound of this region.

3. Calculate the values of target variables T' Vh(” ) and gradient 0T Vh(” A / dA for each
of 9 values of /i, which are 4,+0.01, A ,+0.02,..., 4,+0.09. Figure out the possible region of
the hyperparameter value A;. Let A, denote the lower bound of this region.

4. Calculate the values of target variables T' Vh(” A for 9 values of 1 , which are
A 10.001, 4, +0.002,..., 4 ;+0.009. The suitable hyperparameter value A,° is the one
associated with the minimum value of T Vh(” ) from these 4 steps.

Table 3 reports the optimal hyperparameter A;' with the associated values of target
T Vh(” ) and gradient, for each forecast horizon / and each model specification g . The details of

grid search can be found in Appendix B.

*Ttis possible that our grid search may not return the optimal hyperparameter 4 as defined in (15), if the
function TV;/"’:) is not smooth. Regarding this problem, we have tried minimizing the function with respect to the value
of ] for each forecast horizon h = 1,3,6,12 of the SMALL model, using the add-on application OPTMUM in GAUSS.
It returns a similar result to our grid search. The use of this program, however, is not practical for larger models, as it
consumes a lot of processing time even for our smallest model.

* This should be the region that has a negative gradient at its lower bound. This tells that the values in the

region will generate smaller values of TVh(/«i) than one at the lower bound.
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Table 3: A/ from grid search and TV, ", 1971 — 1980

SMALL CEE MEDIUM | LARGE

A 0.130 0.129 0.096 0.053

h=1 TV, P 1.950 1.849 1.665 1.598

gradient 0.008 0.001 —0.000 0.029

A 0.111 0.143 0.117 0.072

h=3 Ty 1.876 1.739 1.695 1.614
gradient 0.001 0.004 0.024 —0.008

A 0.130 0.134 0.017 0.059

h=6 Ty, 1.887 1.852 2.191 2.288
gradient 0.007 0.004 —0.350 —0.033

Y 0.102 0.049 0.020 0.006

h=12 Ty, 1.912 1.896 2.254 2.483
gradient —0.000 —-0.020 —0.672 —-1.646

Using the suitable values A, from Table 3, we perform the out-of-sample assessment.
Let #, and 7, denote the position of January 1981 and December 2003, respectively, in the data
set. We compute the forecast I}ti‘;ﬂf’i) in each period 1= t, —h, ...,t; —h (276 times) with VAR
of order p = 13, using the most recent 10 years of observations (Rolling scheme, 120
observations), and the parameter & at 107", These forecasts are used to calculate the relative

MSFE in (14), for 3 variables of interest i = EMPL, FFR, and CPI. Table 4 reports the result of
this assessment, with the associated values of T Vh(” A0 = ziel RMSFEI.(” 40 and AL

Since our evaluation period has been changed from the previous section, we also
construct Table 5 for the purpose of comparison. In this table, we use the same setting as in Table

1 of the previous section, but the evaluation period has been changed to one from January 1981

to December 2003.
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According to Table 4, the LARGE model gives the best overall performance. This
supports the finding of BGR that larger Bayesian VARs perform better than smaller models in
forecasting the three key macroeconomic variables. However, we see a significant difference

between Table 4 and Table 5.

Table 4: BVARSs with ﬂ,,f’ , Out-of-Sample Relative MSFE, 1981 — 2003

SMALL CEE MEDIUM | LARGE
EMPL 0.53 0.62 0.53 0.49
FFR 0.96 0.85 0.93 0.80
h=1 |CPI 0.62 0.60 0.57 0.53
TV A 2.104 2.067 2.025 1.822
A 0.130 0.129 0.096 0.053
EMPL 0.42 0.56 0.44 0.37
FFR 1.23 1.06 1.13 0.95
h=3 |CPI 0.59 0.52 0.54 0.51
VA 2.234 2.145 2.107 1.830
A 0.111 0.143 0.117 0.072
EMPL 0.53 0.77 0.63 0.49
FFR 1.47 1.12 1.17 1.05
h=6 |CPI 0.62 0.51 0.43 0.50
TV, 2.612 2.391 2.225 2.045
AL 0.130 0.134 0.017 0.059
EMPL 0.72 0.91 0.82 0.69
FFR 1.47 1.24 1.75 1.75
h=12 |CPI 0.78 0.54 0.47 0.52
TV, 2.966 2.696 3.045 2.970
AL 0.102 0.049 0.020 0.006
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Table 5: BVARSs different A4, Out-of-Sample Relative MSFE, 1981 — 2003

SMALL CEE MEDIUM | LARGE
EMPL 0.81 0.68 0.54 0.47
FFR 1.71 0.99 0.94 0.78
"l CPI 0.83 0.64 0.57 0.54
TV~ 3.360 2.313 2.049 1.794
EMPL 0.67 0.65 0.43 0.32
FFR 1.74 1.43 1.12 0.89
" CPI 0.73 0.58 0.53 0.48
veh 3.132 2.649 2.077 1.689
EMPL 0.89 0.95 0.62 0.45
FFR 2.44 1.58 1.36 1.00
"o CPI 0.77 0.59 0.48 0.47
TV, “» 4.105 3.117 2.461 1.925
EMPL 1.04 1.33 0.93 0.82
FFR 3.18 1.63 1.40 1.64
h=12
CPI 1.04 0.80 0.51 0.56
TV~ 5.266 3.761 2.840 3.014
A o0 0.262 0.108 0.035
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The results of Table 5 seem to indicate that adding more variables into the VAR helps to
significantly improve its forecasting performances. The models with 7 and 20 variables perform
much better than the 3-variables model. Since Bayesian or shrinkage estimation allows us to use
all available information in making forecasts, adding as many data as possible like the LARGE
model helps further improve the forecasting performances.

However, Table 4 shows that this impression is false. This is a result of allowing no
shrinkage at all for the SMALL model. If we use Bayesian or shrinkage estimation with the
SMALL model, the improvement of larger VARs over the 3-variables VAR becomes minimal.
Specifically, the 7-variables and 20-variables models do not seem to have a clear edge over the 3-
variables model, and the improvement of the 131-variables VAR is much less pronounced than
what Table 5 implies. This is also the case after we have tried to make the most out of each model

given our pre-evaluation period.

5. Repeated Calculations of Hyperparameter Values

It can be the case that the optimal hyperparameter value A, varies with time. Allowing
some changes for the value may improve the forecasting performance of each Bayesian VAR. In
this section, we allow this change every 10 years. We repeat our practice in the previous section
of finding the suitable hyperparameter value after we have an additional 10 years of observations.

Table 6 reports the suitable hyperparameter value A, with the associated values of the
target variable and gradient for each forecast horizon /# and each model f , using the observations
from January 1971 to December 1990. Table 7 reports the same values, using the observations
from January 1971 to December 2000. The suitable hyperparameter values reported in Table 6
and Table 7 look different from the ones in Table 3 of the previous section. However, the values

are relatively similar in these two tables.
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Table 6: A/ from grid search and TV, * 1971 -1990

SMALL CEE MEDIUM | LARGE

Al 0.164 0.102 0.078 0.044

h=1 TV, “h 2.003 1.920 1.793 1.666
gradient —0.002 0.007 0.010 —0.069

Al 0.089 0.085 0.066 0.048

h=3 Ty 2.044 1.857 1.849 1.691
gradient —0.005 0.003 —0.036 —0.063

A 0.059 0.066 0.022 0.043

h=6 TV P 2.195 1.986 2.246 2.199
gradient —0.030 0.014 0.033 —0.002

A 0.073 0.055 0.047 0.005

h=12 Ty, 2.407 2.227 2.691 2.772
gradient 0.018 0.064 0.126 12.717

Table 7: A/ from grid search and TV, “", 1971 - 2000

SMALL CEE MEDIUM | LARGE

Al 0.168 0.101 0.077 0.043

h=1 TV “h 2.030 1.963 1.828 1.704
gradient —0.001 —0.007 0.015 —0.008

Al 0.098 0.083 0.062 0.046

h=3 Ty 2.045 1.877 1.852 1.699

gradient —0.002 —0.018 —0.018 0.096

A 0.071 0.064 0.022 0.041

h=6 TV P 2.199 2.004 2.212 2.176
gradient 0.000 —-0.010 -0.225 —0.028

A 0.086 0.054 0.043 0.005

h=12 Ty, 2.434 2.276 2.690 2.724

gradient -0.017 —0.004 0.134 4.146
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Next, we use the hyperparameter values from Table 3, Table 6, and Table 7 in assessing
the out-of-sample forecasting performances of our Bayesian VARs. The values from Table 3 are
used to make forecasts from January 1981 to December 1990. Ones from Table 6 are used for the
forecasts from January 1991 to December 2000, and ones from Table 7 for January 2001 to
December 2003. Table 8 reports the values of out-of-sample relative MSFE from this exercise.
The variable TV represents the sum of relative MSFE of our variables of interest for model u
and forecast horizon 4. Comparing the results in Table 8 and Table 4, we can see that our exercise

only marginally improves the forecasting performances of the models.

Table 8: BVARs with Varied A, Out-of-Sample Relative MSFE, 1981 — 2003

SMALL CEE MEDIUM | LARGE
EMPL 0.53 0.62 0.53 0.49
FFR 0.96 0.85 0.93 0.80
" CPI 0.62 0.60 0.57 0.53
s 2.102 2.063 2.025 1.821
EMPL 0.43 0.57 0.45 0.37
FFR 1.23 1.05 1.12 0.95
"3 CPI 0.59 0.51 0.52 0.50
v} 2.241 2.133 2.090 1.819
EMPL 0.58 0.79 0.61 0.48
FFR 1.46 1.08 1.16 1.05
e CPI 0.60 0.49 0.44 0.50
iz 2.650 2.362 2.202 2.036
EMPL 0.75 0.91 0.78 0.71
FFR 1.46 1.24 1.73 1.76
h=12
CPI 0.77 0.54 0.51 0.52
TV} 2.987 2.693 3.018 2.987
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6. An Updating Scheme for the Hyperparameter

Another way to allow changes in hyperparameter values is to use an updating scheme
that is sensitive to previous forecasting performances of the model. In this section, we apply an
updating scheme that makes use of each additional observation in determining whether to change
the hyperparameter value of a model. Such adaptive schemes will only improve forecasting
performance if the underlying data generating process (DGP) is changing through time. What the
“optimal” adaptive scheme will be depends on how the underlying DGP is changing over time.

Although there is a strong belief that there has been structural change in the economic
system during our sample period, there is no precise information about how the parameters have
changed. Therefore, instead of making an arbitrary assumption about what mechanisms may be
governing such changes and then driving the optimal adaptive scheme for that mechanism, we
consider an adaptive scheme that makes good sense to us. From the practice of forecasting, we
know that adaptive schemes that give very high weight to new information often chase noises and
do not perform very well. Hence, we consider the following scheme.

Let 7, and ¢, represent the positions of January 1981 and December 2003, respectively.
We start using the hyperparameter value of each model and each forecast horizon from Table 3.
We use ﬂ,h’f , 1O denote this initial hyperparameter value. Let Z,ffr denote the value used in a
given period 7. At the start of each period 7" €[¢,,t,], we use a model 4 in making a forecast
YAT(‘/TILA,'?T). At the end of the period 7, after realizing the actual data Y, , we calculate the square

forecast error from the Bayesian VAR s :

(u.44'p) _ A ML N2
SFEi,//:;T = (yi,T _yzfl\r_’h )", (22)

as well as the square forecast error from the benchmark model SFEi(,(,),);T for each variable of

interest i € [ .
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We also calculate at this point in time the indicators:

SFE"“%)
INDC" = — A7 : (23)
’ i Y SFE() +(276+1,—T)SFE/}),

i,h;t

for 3 values of the hyperparameter A, which are 4, 4,,+0.001, and 4;°.-0.001 °. We use the
indicator INDC,(H”T’M to approximate the marginal increase in the sum of relative MSFE from
using different values of A at time 7. Observe that the term ZLU SFE,'(,Z)J in the denominator
increases as T increases. We put the term (2764, —T )SFE[(,(,),);T ® into the denominator as well to
make the value of INDC ,gf}’i) relatively stable along the time 7. Otherwise, the value A, will
experience greater fluctuations for a small 7 and be very stable for larger 7, if we fix a constant
threshold as in the following .

Among these 3 hyperparameter values, we first choose the one that gives the minimum
value of ]NDCX’T’M. If it is A =4, , we also use this value as 4;';,, in the next period.
Otherwise, for A € {4, +0.001, 4%, —0.001} , it (INDC,5"*"" — INDC™) is higher than
0.0001 we use this new value as /l,ffm in the next period. Observe that we can increase the
fluctuation of the hyperparameter value l,f, ; by increasing the step size (Currently at 0.001) and
lowering the threshold value (Currently at 0.0001). Actually, we have made some experiments
with a range of threshold values and step sizes. The settings reported here yields the best results.
Note also that in this process we use the information up to period 7 to figure out the

hyperparameter value l,ff 4 that will be applied in the next time period 7+1.

* We use step size equal to 0.001 in every case, except for the case of LARGE model with 4 = 12 that we use
step size at 0.0005.

® Recall that 276 = t, — t,— 1 is the total number of repetitions in our out-of-sample exercise.
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At the end of the exercise, we calculate relative MSFE for each variable of interest i € /
A . .
from the square forecast errors SFEI‘(},:AT”’T) calculated at the start of each period T. The relative
MSFE can be written as:

S SFELA

t=t, ih;t

(0) (24)
SFEi,h;t

RMSFE}) =

]

t=t,

Table 9 reports the relative MSFE from this exercise.

Comparing Table 9 to Table 4, there is just a small improvement to the forecasting
performance of each Bayesian VAR from this exercise. This improvement, however, does not
affect our finding in Section 4 that the forecasting performances of the larger models are not

impressively better than is the case in the smallest model.

7. Conclusion

Bayesian or shrinkage estimation allows us to use all available information to forecast
key economic indicators. BGR show us this point using the US data. The results of BGR, similar

to our Table 1 or Table 5, implicitly imply that a 3-variables VAR is grossly inadequate.

However, this impression is false and is a result of their practice of not allowing any
shrinkage in the 3-variables model. This 3-variables VAR has 13 lags, estimated using 120
observations. We have shown that if we use a shrinkage estimator for this 3-variables model with
an appropriate hyperparameter value, the improvement of larger models will be minimal.
Specifically, the 7-variables and 20-variables models considered in BGR do not seem to have a
clear edge over the 3-variables model, and the improvement of the 131-variables model is much

less pronounced than what BGR implies.



Table 9: BVARs with Varied A, Out-of-Sample Relative MSFE, 1981 — 2003

SMALL CEE MEDIUM | LARGE
EMPL 0.53 0.62 0.52 0.48
FFR 0.95 0.84 0.91 0.78
h=1 |CPI 0.61 0.60 0.57 0.53
v} 2.098 2.053 2.003 1.798
Ao 0.130 0.129 0.096 0.053
EMPL 0.42 0.56 0.43 0.36
FFR 1.23 1.04 1.12 0.91
h=3 |CPI 0.59 0.52 0.53 0.48
TV 2.237 2.124 2.079 1.747
Ao 0.111 0.143 0.117 0.072
EMPL 0.53 0.77 0.44 0.47
FFR 1.47 1.11 1.04 1.02
h=6 |CPI 0.62 0.50 0.50 0.49
v} 2.613 2.383 1.978 1.975
Ao 0.130 0.134 0.017 0.059
EMPL 0.72 0.92 0.81 0.57
FFR 1.47 1.24 1.63 1.54
h=12 |CPI 0.78 0.54 0.46 0.44
v} 2.966 2.698 2.908 2.548
Ao 0.102 0.049 0.020 0.006

29
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We try allowing for time-varying hyperparameter values as well, but the result we have
found so far is that the time-varying scheme only marginally improves the performance of each
model. It does not change our previous conclusion either.

In this study, we also demonstrate a way to calculate the suitable hyperparameter value
for each model specification with a given forecast horizon. The value is chosen based on the out-
of-sample forecasting performances in the test period, which is a part of the pre-evaluation period.
This process takes time for the LARGE model. The estimation of the LARGE model involves
calculating for the inverse of matrix of dimension (1,704 % 1,704). Since we have to estimate the
model 120 times for each value of A and each forecast horizon /4 in the grid search shown in the
Appendix B, it costs us about 3 days for each of the 4 steps in the search under the computation of
a Pentium Core 2 processor. The whole process of the grid search, which is composed of 4 steps,
requires about two weeks.

In practice of course, we need to figure this suitable hyperparameter value just once. We
think that this is the process that should be taken rather than depending on an arbitrarily chosen
value. Moreover, as can be observed from Table 6 and Table 7, the value tends to be stable for a
long enough series as in the case of US data.

It would be convenient if we could figure out some patterns of changes in the suitable
hyperparameter values of the Bayesian VARs. For example, the values may decrease for longer
forecast horizons or bigger model specifications. Our results so far have not shown any obvious
pattern. However, a more thorough investigation in this direction is still interesting.

Another interesting way to deal with the hyperparameter value is to figure out a good
updating scheme. The scheme that can calculate a suitable hyperparameter value after every
additional realization looks very attractive for actual forecasting excercies. Unfortunately, this
hyperparameter has a non-linear relationship with the forecasting performances of the model. One
might have to depend on a relatively complicated framework to figure out an optimal updating

scheme for the model.
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Appendices

A. Gradient Matrix of the Coefficients

To simplify the notation, let Z = Q'+ X'X . The posterior mean B can be written as:

B=Z"'(Q'B+X'Y). (A1)

The derivative of B with respect to A can be computed from:

-1
9B _ 4 (i(ﬁ“E+X'Y)j+ oz (Q'B+X'Y),
oA oA oA
; - (A2)
:Z‘(—~lez§j+ Z )\ &b xy)
oA ol

From Magnus and Neudecker (1999), the derivative of an inverse matrix of functions Z

can be written as:

-1
0L _ 5 (a—%jz*. (A3)

Since the matrix X 'X is not a function of 1 , the derivative 07 / ol is:

=
%=a§i =—%diag(af,...,a,i;22~012,...,22-a,i;...;pz-af,...,pz-051;0). (A4)

The derivative 8(Q'B) / &/ can also be written as:
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=1
0 i [ﬂjg (A5)

and the value of 0Q! / O is as in (A4).
Totally, from (A1) — (A5), we have:
) ~)-1 ~-1
B _ 4 [ag ]B -z [ai]z*(fz-lé +X'7),

oA
(A6)



