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Forecasting with Bayesian VARs: Does Larger Mean Better? 
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บทคัดยอ 

 ในทางทฤษฎีนั้นเรานาจะเพิ่มความสามารถในการทํานายของแบบจําลอง Bayesian Vector 
Autoregressions (Bayesian VARs) ไดจากการเพิ่มตัวแปรเขาไปในแบบจําลองดังกลาว บทความนี้
จะทําการทดสอบสมมุติฐานขางตนในเชิงประจักษ โดยเราจะเปรียบเทียบความสามารถในการ
ทํานายตัวแปรสําคัญทางเศรษฐกิจ 3 ตัวแปรของแบบจําลอง Bayesian VAR ขนาดใหญท่ีอาศัยตัว
แปรทั้งส้ิน 131 ตัวแปร กับแบบจําลองขนาดเล็กอื่นๆ โดยท่ีแบบจําลองขนาดเล็กท่ีสุดจะอาศัยตัว
แปรเพียงแค 3 ตัวเทานั้น ในการเปรียบเทียบความสามารถในการทํานายคร้ังนี้เราใหความสําคัญกับ
คา hyperparameter ตัวหนึ่ง ซ่ึงทําหนาท่ีเปนตัวกําหนดคาความแปรปรวนโดยรวมของตัว Prior 
Distribution ในการประมาณคาแบบ Bayesian ดวย เราพบวาการกําหนดคา hyperparameter 
ดังกลาวจะสงผลกระทบตอความสามารถในการทํานายของแบบจําลองขนาดตางๆ เปนอยางมาก 
ภายหลังจากความพยายามหาคา hyperparameter ท่ีเหมาะสมใหกับแตละแบบจําลองผลลัพธท่ีได
จากการศึกษาของเราสนับสนุนแนวคิดท่ีวาแบบจําลอง Bayesian VAR ขนาดใหญจะมี
ความสามารถในการทํานายท่ีเหนือกวาแบบจําลองขนาดเล็กกวา  

Abstract 

Conceptually, the impressive forecasting performance of the Bayesian VARs may be 
further improved by expanding the number of variables into the models. This paper compares the 
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forecasting performance of a large 131 variable Bayesian VAR to much smaller models. Our 
paper gives especially careful consideration to the effect that a hyperparameter governing the 
overall tightness of the prior distribution can have, since the performance of a Bayesian 
regression can be so affected by it. Our results support the idea that larger Bayesian VARs 
perform better than smaller ones. However, when the hyperparameter of the prior distribution of a 
smaller model is carefully chosen, the improvement in performances of larger models is not as 
impressive as previously thought. Even a 3-variable model with an appropriately chosen 
shrinkage parameter will produce much better forecasts than those reported in the literature. 

 
JEL Classification: C11, C33, C52, C53, E37 
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1.   Introduction 

In forecasting macroeconomic variables, Bayesian VARs have an excellent record of 
performing well in the literature. For example, Robertson and Tallman (1999) report that various 
Bayesian VAR specifications outperform unrestricted VARs, while Litterman (1986) shows that a 
Bayesian VAR outperforms an ARIMA, a univariate AR, and the best known commercial 
forecasting services in out-of-sample forecasting. 

According to Litterman(1986), there are at least two advantages to using Bayesian VARs 
over other nonstructural econometric models. First, since there are many relationships among 
macroeconomic variables not fully understood by economists, and Bayesian VARs, which allow 
some uncertainty over the true structure of the economy, give better forecasts than other models 
that are fully based on just a single economic structure. Second, under situations of a limited 
observations, Bayesian VARs allow the incorporation of more information. A larger number of 
parameters can be fitted into the model by assigning appropriate weights to the prior information. 

With these advantages, one may argue that larger Bayesian VARs can outperform 
smaller models in forecasting. Since the exact structure of the economy is not known and the 
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problem about the degrees of freedom is ameliorated, larger Bayesian VARs seem to have an 
advantage over smaller ones. 

Recent forecasting literature is also supportive of the practice of incorporating a large 
number of variables into models. Many methods have been proposed to allow this practice. These 
include, for example, the dynamic factor models of Stock and Watson (2002a) and Forni, Halli, 
Lippi, and Reichlin (2000), and the factor-augmented VAR of Bernanke, Boivin, and Eliasz 
(2005). There is a lot of evidence demonstrating that this practice improves the forecasting 
performances of the models. See, for example, D’Agostino and Giannone (2007), Bernanke and 
Boivin (2003), Stock and Watson (2002b), and Forni, Halli, Lippi, and Reichlin (2003). 

Banbura, Giannone, and Reichlin (2008) (henceforth BGR) show that the method of 
Bayesian VAR admits a large number of endogenous variables. They investigate empirically 
whether this practice is desirable. According to the authors, a large Bayesian VAR with 131 
variables performs better than smaller models with 3, 7, and 20 variables in out-of-sample 
forecasting. The largest model clearly outperforms the two smallest ones, its forecasting 
performance was however, matched by the model with 20 variables. 

The Bayesian VAR estimator, however, depends on a hyperparameter determining the 
relative weight given to the prior information, and as a consequence the out-of-sample forecasting 
performance of a model is influenced by this hyperparameter as well. BGR's findings therefore 
are based on the particular way that they determine the value of this hyperparameter. We do not 
find the BGR's method the most natural way of setting this value, and there is no reason to believe 
that their results will be robust if this parameter value is chosen in a different way. In section 3, 
we show that if we assign different values to this hyperparameter, larger VARs of BGR may not 
outperform smaller ones. 

This paper first determines a suitable hyperparameter value for each model, which makes 
the most out of each model given our pre-evaluation period. Given a model and a forecast 
horizon, we find the hyperparameter value that minimizes the magnitude of out-of-sample 
forecast errors in a part of the pre-evaluation period. After that, we assign this suitable value to 
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that model during our out-of-sample assessment in an evaluation period. This is shown in section 
4. Our result in this section supports BGR's finding that larger models perform better in the 
overall picture. However, the performances of the larger models are not dramatically different 
from that of the smallest model. 

We realize that the suitable hyperparameter value can vary over time. The time-varying 
hyperparameter may affect different models in different magnitudes. To make our study more 
robust, we extend it out in two additional ways. First, we allow the suitable hyperparameter value 
of each model to change every 10 years. For each additional 10 years of observations, we re-
calculate a suitable hyperparameter value for each model. After that, we use this hyperparameter 
value in making forecasts for the next 10 years, at which point we again re-calculate a new 
hyperparameter value. We assess the performances of Bayesian VARs under this practice. The 
result of this is shown in section 5. Contrary to our expectation, this practice does not improve the 
forecasting performances of any model specifications. 

Second, we apply an updating scheme for the hyperparameter value. With additional 
data, we calculate the effect of a small change in the value of the hyperparameter. If the change 
signals an improvement in the forecasting performance of a model, a new hyperparameter value is 
applied to the model for making the forecast for the next period. Section 6 reports the result from 
this experiment. It shows that our updating scheme marginally improves the forecasting 
performance of each model specification. 

Section 2 shows the details of the model and the estimation method used in this paper, 
and section 7 concludes the paper. 
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2.   Estimated Model 

We estimate the same Bayesian VARs as BGR. Let 1, 2, ,(   ... ) 't t t m tY y y y=  be an 1m×  
column vector of m endogenous variables in period t. The reduced form of the VAR is: 

   
 1 1 2 2 11 1 1 11

... ,t t t p t p tmm m m mm m m mm m m

Y A Y A Y A Y U− − − ×× ×× × × ×× ×

= + + + + +c  (1)

where 1( ,..., ) 'mc c=c  is the vector of constants, and 1, ,(  ... ) 't t m tU u u=  is the vector of 

unknown disturbances. We assume that: 

 
 

11
~ ( , ),t m mmm

U N
×××
Ψ0   

where the time-invariant matrix Ψ  is a positive definite matrix. 

Let ' '
1( ,..., ,1) 't t t pX Y Y− −=  be a column vector containing p lags of tY  and a constant 1. 

With observations 1,..., ,t T=  we can rearrange the VAR from (1) into: 
 

 ,
T m T k k m T m
Y X B U
× × × ×
= +  (2) 

where 1( ,..., ) 'TY Y Y=  is the matrix of dependent variables, 1( ,..., ) 'TX X X=  is the matrix of 
independent variables, 1( ,..., , ) 'pB A A c=  is the matrix of unknown coefficients, 

1( ,..., ) 'TU U U=  is the matrix of disturbances, and k = mp+1 is the total number of independent 
variables. Let u be the column vector obtained by stacking the columns of the disturbance matrix 
U from (2). The above assumption on tU  is equivalent to: 
 

 
1 1
~ ( , ),

m m T TTm Tm
N I

× ×× ×
Ψ ⊗u 0  

 

where ⊗  represents the Kronecker product, and I is an identity matrix. 
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With the seemingly-unrelated-regressions (SUR) structure, the efficient estimator for B is 
the same as an unrestricted OLS estimator, which is: 

 
 1ˆ ( ' ) ( ' ).B X X X Y−=  (3) 

 

A major problem with this estimator is that increases in the number of endogenous 
variables m or the number of lags p used in the model, while hoding the number of observations T  
finite, render the estimator more unreliable or even uncomputable. Bayesian VARs help avoid 
this problem. 

According to the Bayesian VAR approach, the coefficients in the model are treated as 
random variables, with given means and variances. The prior information about these means and 
variances is imposed, and we update this information with the sample observations, using Bayes' 
law. The end result is the posterior distribution of the coefficients with estimated means and 
variances. With suitable adjustment to the parameter of the model, there is no requirement on the 
total number of observations. This is because these observations are only used to update the prior 
distribution. 

The main issue of implementing Bayesian VARs is about the specification of prior 
distribution. Litterman (1986) suggests imposing a form of prior distributions, generally referred 
to as a “Minnesota prior”. The prior puts the means of the coefficients at the point that makes tY  
be a vector of univariate random walks, i.e. the means are at 1 m mA I ×=  and 2 ,..., p m mA A ×= 0 . It 
may or may not allow for drift. The coefficients are also uncorrelated with each other, with prior 
variances given by: 
 

 

2

2
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2 2
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var[( ) ]    
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where ( )l ijA  is the ij-th element of the l-th lag coefficient matrix lA , 0λ ≥  is the 
hyperparameter determining the overall tightness of the distribution around the random walk, 

2
iσ , i = 1,...,m, is the variance of disturbance term of the variable ,i ty  in the VAR, and (0,1]π ∈  

is another hyperparameter, reflecting the relative importance of other endogenous variables j i≠  
in accounting for the variation of variable i. The prior on the intercept c is diffuse, i.e. the 
variance is very high. 

Recall that a variance close to zero indicates the distribution is very tight around the 
mean value. Lowering the value of λ  toward zero means tightening the prior distribution toward 
the random walk. The term 2l  is added to reflect that the longer lagged variables should each 
have a progressively smaller effect on the current variation of each variable, i.e. that the 
coefficients in front of these variables should be tightened more toward zero. The hyperparameter 
π  has the same function as 2l , but for other endogenous variables j i≠ . It captures the idea that 
in explaining the variation of a variable, own lags are more important than lags of the other 
variables. At last, the ratio 2 2/i jσ σ  is used to account for the difference in the units of 
measurement of different variables i and j. For more detailed discussion on the prior variances, 
see Litterman (1986) or Robertson and Tallman (1999). 

Early Bayesian VARs assumed the covariance matrix Ψ  to be diagonal, fixed, and 
known. This is considered to be very restrictive. The prior distribution imposed in this model, as 
recommended by Kadiyala and Karlson (1997), is assumed to be a Normal-(Inverted)-Wishart, 
which has the form: 

 
 

1 1
| ~ ( , )   and   ~ ( , )

m m m m k k m m m mkm km
N iW α

× × × × ×× ×
Ψ Ψ ⊗ Ω Ψ Ψb b% % % ,  (4) 

 
where b is the column vector obtained by stacking columns of the matrix B from (2). The degree 
of freedom of the inverted-Wishart distribution is set at 2mα = + . This makes the prior mean 
and variance of the coefficients to be ( )E =b b%  and var( ) = Ψ⊗Ωb % % . 
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Following Kadiyala and Karlson (1997) and BGR, the parameters of the distribution in 
(4), b% , Ω% , and Ψ% , are chosen to match the Minnesota prior. The parameter b%  is obtained by 
stacking columns of the matrix B% , given by: 

 

 

1

( 1)

1

( ,..., )
................

................
 ... 

m

k m mk m

m

diag

B

b b

δ δ

− − ××

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0% , 

 
where 1( ,..., )mdiag δ δ  is an m m×  diagonal matrix with values 1,..., mδ δ  along its main 
diagonal, iδ , i = 1,...,m, can be either 0 or 1, and ib , i = 1,...,m, is a constant or zero. Originally, 
Litterman sets each iδ  equal to 1. However, following BGR, it is more appropriate to set this 
value at 0jδ =  for any mean-reverting variable j. 

The parameters Ψ%  and Ω%  are set to be: 
 

 2 2
1( ,..., )mm m

diag σ σ
×
Ψ =% , 

 

and 
 

 2
2 2 2 2 2 2 2 2 2 2 2
1 1 1

1 1 1 1 1 1 1,..., ; ,..., ;...; ,..., ;
2 2k k

m m m

diag
p p

λ
σ σ σ σ σ σ λ ε×

⎛ ⎞
Ω = ⋅ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠
% ,  (5) 

 
where ε  is a very small number. These parameters make the prior variance of the coefficients, 
var( ) = Ψ⊗Ωb % % , follow the Minnesota prior, with the one exception of the hyperparameter π , 
which must be equal to 1 (See Kadiyala and Karlson, 1997, or Robertson and Tallman, 1999, for 
more details). In practice, each parameter 2

iσ  is set to be the variance of the OLS residual from a 
univariate autoregressive model of order p of the variable ,i ty . 
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The posterior distribution of this model is also Normal-(Inverted)-Wishart, given by: 
 

 
1 1
| , ~ ( , )  and  | ~ ( , )

m m T m m m k k m m T m m mkm km
Y N Y iW T α

× × × × × × ×× ×
Ψ Ψ ⊗ Ω Ψ Ψ +b b ,  (6) 

 
where 1 1( ' )X X− −Ω = Ω +% , b  is obtained from stacking columns of the matrix B , given by: 
 
 1 1 1( ' ) ( ' )B X X B X Y− − −= Ω + Ω +% % % ,  (7) 
 
and Ψ  is given by: 
 
  1 1' '( ' ) 'Y Y B X X B B B− −Ψ = − Ω + + Ω +Ψ% % % % % . (8) 
 
Normally, the posterior mean b  is used as the point estimate of the model. 

With the OLS estimator in (3), the estimator of the posterior mean from (7) can be 
rewritten as: 
 
 1 1 1 ˆ( ' ) ( ( ' ) )B X X B X X B− − −= Ω + Ω +% % % . (9) 
 
The estimator in (9) looks similar to a weighted average between the prior mean B%  and the OLS 
estimator B̂  of the model. It is actually a shrinkage estimator that shrinks the OLS estimate 
toward the prior mean, which is the random walk in this case. Since λ  determines the magnitude 
of the matrix Ω% , setting different values of λ  is equivalent to assigning different relative 
weights to the prior information. In one extreme, if 0λ = , we give the whole weight toward the 
prior information. If λ = +∞ , we give the whole weight toward the OLS estimator. 

Mathematically, the main problem with the OLS estimator (3) is the singularity of the 
matrix 'X X . The posterior mean of the Bayesian VARs as in (9) avoids this problem by 
summing the diagonal matrix 1−Ω%  into the matrix 'X X . This technique produces a feasible and 
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more reliable (less variance) estimator when the number of parameters is too large relative to the 
number of observations. 
 

3.   Performances with Different Hyperparameter Values 
 

The main method we use in evaluating the performance of each VAR specification is the 
out-of-sample assessment. We follow BGR’s practice closely. The data set is of Stock and 
Watson (2005), which have 132 monthly macroeconomic indicators running from January 1959 
to December 2003. 
 Let ( , ) ( , ) ( , )

| 1, | , |
ˆ ˆ ˆ(  ... ) 't h t t h t m t h tY y yμ λ μ λ μ λ
+ + +=  denote the point estimate of the h-steps ahead forecast 

obtained from the model μ  with the hyperparameter value λ . The point estimate of the one-step 
ahead forecast is computed from: 
 
 ( , ) ( , )

1| 1
ˆ ' 't t tY X Bμ λ μ λ
+ += , (10) 

 
where ( , )B μ λ  is the posterior mean of the coefficients from the model μ  with the 
hyperparameter value λ . For the case of p > h > 1 that we consider, we can recursively construct 
a matrix of independent variables ( , )

|t h tX μ λ
+ , given by: 

 
 ( , ) ( , ) ( , )

| 1| 1|
ˆ ˆ( ',..., ', ',..., ',1) 't h t t h t t t t t h pX Y Y Y Yμ λ μ λ μ λ

+ + − + + −= , (11) 
 
using the forecasts ( , ) ( , )

1| 1|
ˆ ˆ,...,t h t t tY Yμ λ μ λ
+ − +  and the sample observations ,...,t t h pY Y + − . The point 

estimate of the h-steps forecast, then, is computed from: 
 
 ( , ) ( , ) ( , )

| |
ˆ ' 't h t t h tY X Bμ λ μ λ μ λ
+ += . (12) 

 
 The random walk is used as our benchmark model. The estimator can be obtained by 
setting λ  equal to 0, which makes the h-steps ahead forecast from this model to be the same 
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across all model specifications μ . We use (0)
|t̂ h tY +  to denote the h-steps ahead forecast from this 

benchmark model. Most of the parameter iδ  are set to be 1, except for some stationary variables 
specified by BGR, of which iδ  are set to be 0 (See the last column of the Appendix C). 
 The out-of-sample assessment is conducted for forecast horizons h equal to 1, 3, 6, and 
12. Let 0t  and 1t  denote the position of January 1971 and December 2003 in the data set. For 
each forecast horizon h, we compute ( , )

|t̂ h tY μ λ
+  in each period t = 0t h− , …, 1t h−  (396 times). The 

order of the VAR is p = 13. The parameters and posterior mean in each model for each t are 
computed from the most recent 10 years of sample observations up to time t (Rolling scheme, 120 
observations). We set the small number ε , the parameter governing prior variances of the 
constant terms in the matrix Ω%  in (5), to be 1010− .  
 The forecasting performance is measured in terms of out-of-sample Mean Squared 
Forecast Error (MSE). For the model μ , the value λ , the forecast horizon h, and the variable i, 
we have: 
 

 ( )
1

0

2( , ) ( , )
, , , |

1 0

1 ˆ
1

t h

i h i t h i t h t
t t h

MSFE y y
t t

μ λ μ λ
−

+ +
= −

= −
− + ∑ . (13) 

 
The results are reported for MSFE relative to the benchmark model “Random walk with drift”, 
given by: 
 

 
( , )
,( , )

, (0)
,

i h
i h

i h

MSFE
RMSFE

MSFE

μ λ
μ λ = . (14) 

 
A number smaller than one for ( , )

,i hRMSFE μ λ  implies that the model μ  with value λ  performs 
better than the random walk.  
 The variable of interest i are 1) employment (EMPL), measured by the number of 
employees on non-farm payrolls, 2) consumer price index (CPI) representing the price level, and 
3) the Federal Fund Rate (FFR) representing the monetary instrument. 
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 Following BGR, there are 4 VAR specifications μ , which are: 
1.  SMALL. There are only 3 variables of interest:   1) EMPL,   2)  FFR,  and 3) CPI. 

            2.  CEE. This is the model of Christiano, Eichenbaum, and Evans (1999). There are 7 
variables, 3 as in SMALL, and additionally 4) index of sensitive material prices, 5) non-borrowed 
reserves, 6) total reserves, and 7) M2 money stock. (I believe this should be its own paragraph, 
renumber 2 &3 below) 

3. MEDIUM. There are 20 variables, 7 as in CEE, and additionally 8) personal income, 
9) real consumption, 10) industrial production, 11) capacity utilization, 12) the unemployment 
rate, 13) housing starts, 14) producer price index, 15) personal consumption expenditures price 
deflator, 16) average hourly earnings, 17) M1 money stock, 18) Standard and Poor’s price index, 
19) Yields on 10-year US Treasury bond, and 20) effective exchange rate. 

4. LARGE. This specification includes all indicators in the data set, except for the spot 
market price index of all commodities (PSCCOM). 

We report our first out-of-sample assessment result in Table 1, using the same 
hyperparameter values as in BGR. That is λ = ∞  for μ = SMALL, 0.262λ =  for μ = CEE, 

0.108λ =  for μ = MEDIUM, and 0.035λ =  for μ = LARGE. This result is qualitatively 
similar to Table 1 of BGR. It can be seen clearly that larger models perform better than smaller 
ones. 
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Table 1: BVARs different λ , Out-of-Sample Relative MSFE, 1971 – 2003 

SMALL CEE MEDIUM LARGE
EMPL 1.02 0.65 0.54 0.45
FFR 1.65 0.90 0.79 0.75
CPI 0.81 0.55 0.51 0.51
EMPL 0.85 0.63 0.50 0.37
FFR 1.57 1.12 0.96 0.92
CPI 0.60 0.43 0.40 0.40
EMPL 0.90 0.79 0.66 0.51
FFR 1.84 1.30 1.31 1.24
CPI 0.59 0.44 0.37 0.40
EMPL 0.84 0.96 0.87 0.81
FFR 2.48 1.49 1.56 1.80
CPI 0.74 0.60 0.44 0.45

∞ 0.262 0.108 0.035λ

h = 1

h = 3

h = 6

h = 12

 

 
BGR assign hyperparameter values to keep the in-sample fit of all models in the pre-

evaluation period to be the same, for the forecast horizon h = 1. Specifically, let 0T  denote the 
position of December 1969 in the data set. Define the in-sample 1-step ahead mean squared 
forecast errors (msfe) for a model μ , a hyperparameter value λ , and a variable i as: 
 

 ( )
0 1 2( , ) ( , )

, 1| , 1
0

1 ˆ
1

T

i i t t i t
t p

msfe y y
T p

μ λ μ λ
−

+ +
=

= −
− − ∑ . 

Note that ( , )
, 1|ˆi t ty μ λ
+  is the in-sample forecast (Estimated value) for , 1i ty +  within the period from 

January 1960 (t = 1) to December 1969 (t = 0T ). 
 Next, estimate the unrestricted OLS VAR of the SMALL model using the data from 
January 1960 to December 1969, and figure out the in-sample fit (Fit), given by: 
 

 
( , )

(0)
,

1
3

i

i I i SMALL

msfeFit
msfe

μ λ

μ λ∈ = =+∞

= ∑ , 

where {EMPL,FFR,CPI}I =  is the set of variables of interest. 
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 At last, for each model SMALLμ ≠ , determine using a grid search the hyperparameter 
( , )Fitμλ  that gives the in-sample fit of the model closest to the in-sample fit of the unrestricted 

OLS VAR. Specifically, the hyperparameter ( , )Fitμλ  can be defined as: 
 

( , )
( , )

(0)

1arg min
3

Fit i

i I i

msfeFit
msfe

μ λ
μ

λ
λ

∈

= − ∑ . 

  

 We see the way BGR set the hyperparameter value biases against small models. First, 
note that the SMALL Bayesian VAR of BGR is actually the unrestricted OLS VAR. This is 
because the hyperparameter of the model is set at λ = +∞ . The SMALL model does not benefit 
from shrinkage estimation at all. Next, observe that larger models will be assigned lower values 
of the hyperparameter λ . This is a usual result as a larger OLS model provides a better in-sample 
fit to the sample observations. To set the in-sample fit at a given level, this model must be pulled 
away more from its OLS estimate. However, since the shrinkage estimator improves the 
forecasting performance of a model by avoiding the problem of overfitting into the sample 
observations1, this way of assigning the hyperparameter values provides more benefits to larger 
models. 
 To show this empirically, we set up a new out-of-sample assessment that assigns the 
same hyperparameter value across all model specifications. Each hyperparameter value 

0.035λ = , 0.108, and 0.262 is applied to all specifications  in this assessment. Everything else 
stays the same. Table 2 reports the relative MSFE under this new assessment.  
 Comparing Table 2 to Table 1, we can see an obvious improvement in the performance 
of small models. Even the smallest models can benefit from shrinkage estimation. The SMALL is 
a 3-variable VAR with 13 lags, which results in 40 coefficients to be estimated per equation 
including the constant term. It is estimated with 120 observations each time. The smallest amount 

                                                 
1 Zha (1998) provides a good discussion on this point. 
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of shrinkage in this experiment, 0.262λ = , can remarkably improve the forecasting 
performances of this model. 
 The obvious improvement of the forecasting performances for larger models disappears. 
This point is apparent for the hyperparameter values 0.108λ =  and 0.262λ = . Especially 
noteworthy is that for the case of fixing the value at 0.262λ = , the SMALL model outperforms 
other larger models in the overall picture. This suggests that the value of hyperparameter λ  must 
be chosen more carefully. 
  

4.   Performances with Suitable Hyperparameter Values 

In this section, we consider a procedure for choosing a “suitable” hyperparameter value 
for each model based on a training sample. We choose the value that leads to the minimum 
relative MSFE of the variables of interest in an out-of-sample assessment. The observations up to 
December 1980 are employed to figure out each suitable hyperparameter value for a given VAR 
specification μ  and a given forecasting span h. After that we will assess each model with this 
hyperparameter value, using our evaluation period from January 1981 to December 2003.  
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Table 2: BVARs same λ , Out-of-Sample Relative MSFE, 1971 – 2003 
 

SMALL CEE MEDIUM LARGE
EMPL 0.64 0.61 0.52 0.45
FFR 1.00 0.95 0.87 0.75
CPI 0.57 0.51 0.51 0.51
EMPL 0.63 0.56 0.48 0.37
FFR 1.06 1.03 1.02 0.92
CPI 0.47 0.38 0.38 0.40
EMPL 0.73 0.63 0.58 0.51
FFR 1.11 1.11 1.28 1.24
CPI 0.46 0.34 0.34 0.40
EMPL 0.93 0.71 0.72 0.81
FFR 1.22 1.27 1.56 1.80
CPI 0.51 0.40 0.38 0.45

SMALL CEE MEDIUM LARGE
EMPL 0.54 0.59 0.54 0.51
FFR 0.96 0.86 0.79 0.75
CPI 0.55 0.51 0.51 0.55
EMPL 0.49 0.55 0.50 0.40
FFR 1.08 0.94 0.96 0.94
CPI 0.47 0.39 0.40 0.46
EMPL 0.55 0.66 0.66 0.54
FFR 1.18 1.03 1.31 1.33
CPI 0.48 0.37 0.37 0.47
EMPL 0.65 0.76 0.87 0.96
FFR 1.29 1.21 1.56 1.86
CPI 0.55 0.47 0.44 0.59

SMALL CEE MEDIUM LARGE
EMPL 0.57 0.65 0.66 0.65
FFR 0.92 0.90 0.85 0.82
CPI 0.55 0.55 0.54 0.62
EMPL 0.53 0.63 0.63 0.47
FFR 1.14 1.12 1.04 1.05
CPI 0.48 0.43 0.44 0.51
EMPL 0.60 0.79 0.82 0.62
FFR 1.29 1.30 1.51 1.49
CPI 0.50 0.44 0.39 0.52
EMPL 0.65 0.96 1.10 1.09
FFR 1.50 1.49 1.85 1.96
CPI 0.59 0.60 0.49 0.69

h = 12

λ = 0.035

λ = 0.108

h = 1

h = 3

h = 6

h = 12

λ = 0.262

h = 1

h = 3

h = 6

h = 1

h = 3

h = 6

h = 12
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 In searching for a suitable hyperparameter value, let 0τ  and 1τ  denote the position of 
January 1971 and December 1980 in the data set, respectively. For a forecasting span 

{1,3,6,12}h∈  and an arbitrary hyperparameter value λ% , we can compute a forecast ( , )
|

ˆ
hY μ λ

τ τ+
%  for 

each period 0 1,...,h hτ τ τ= − −  (120 times), using the same setting as in the previous section (p 
= 13, rolling scheme with 120 observations, 1010ε −= ). These point forecasts can be used to 
compute ( , )

,i hMSFE μ λ%  and ( , )
,i hRMSFE μ λ%  from (13) and (14), for each variable of interest i. Let 

( , )
hTV μ λ ≡% ( , )

,i h
i I

RMSFE μ λ

∈
∑ %  denote our target variable, which is the sum of relative MSFE of our 

three variables of interest. Note that each relative MSFE does not depend on the unit of 
measurement of each variable, since it is a (xx ? xx) relative term. We find the suitable 
hyperparameter value h

μλ  for each specification μ  and each forecast horizon h using a grid 
search such that: 
 
 ( , )arg minh hTVμ μ λ

λ
λ = %

%
. (15) 

 Since there is no natural upper bound for the hyperparameter λ , a good grid search for 

h
μλ  should cover a wide range of possible values between 0 and +∞ . To avoid this, we calculate 

the derivative ( , )
hTV μ λ λ∂ ∂% %  to help search for each hyperparameter value h

μλ . This allows us to 
search for the value h

μλ  in steps, and helps reduce the task.  
 From (13) and (14), we have: 
 

 
( , ) ( , ) ( , )( , )
EMPL, CPI, FFR,

(0) (0) (0)
EMPL, CPI, FFR,

h h hh

h h h

MSFE MSFE MSFETV
MSFE MSFE MSFE

μ λ μ λ μ λμ λ λ λ λ
λ

∂ ∂ ∂ ∂ ∂ ∂∂
= + +

∂

% % %% % % %

%
, (16) 

where for each variable i I∈ ,       EMPL< CPI, FFR    , 
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1
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0
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1 0

( , )
, |( , )

, , |
1 0

1 ˆ ,
1

ˆ1 ˆ2 .
1

h
i h

i t h i t h t
t h

h
i t h t

i t h i t h t
t h

MSFE
y y

y
y y

μ λ τ
μ λ

τ

μ λτ
μ λ

τ

τ τλ λ

τ τ λ

−

+ +
= −

−
+

+ +
= −

∂ ∂
= −

− +∂ ∂

∂
= − −

− + ∂

∑

∑

%

%

%

%

% %

%

 (17) 

 Given an m n×  matrix Z, we use Z λ∂ ∂ %  to denote the gradient matrix of Z with respect 
to λ% . The gradient matrix Z λ∂ ∂ %  has the same dimension as Z with ijz λ∂ ∂ %  as its ij-th 
element, where ijz  is the ij-th element of Z. This is the same for a gradient vector λ∂ ∂z %  of an 

1m×  vector z. The value of ( , )
, |ˆi t h ty μ λ λ+∂ ∂% %  in (17) can be taken from the gradient vector 

( , )
|t̂ h tY μ λ λ+∂ ∂% % , which, according to (12), can be written as: 

 

 ( ) ( ) ( )( , ) ( , ) ( , ) ( , ) ( , )
| | |

ˆ ' ' 't h t t h t t h tY X B X Bμ λ μ λ μ λ μ λ μ λλ λ λ+ + +∂ ∂ = ∂ ∂ + ∂ ∂% % % % %% % % , (18) 

where ( , )B μ λ λ∂ ∂% %  is given by2: 

 ( ) ( )( )1
( , ) ( , )  1 ( ) ( ) ( , )  1 ( ) ( , )'B X X B Bμ λ μ λ μ μ μ λ μ μ λλ λ

−
− −∂ ∂ = Ω + ∂Ω ∂ −% % %% %% % % . (19) 

  

We can compute the gradient vector ( , )
|t̂ h tY μ λ λ+∂ ∂% %  recursively, using (18) and, according 

to (10) and (11), the following equations: 
 

 

 ( ) ( )( , ) ( , )
1| 1

ˆ ' 't t tY X Bμ λ μ λλ λ+ +∂ ∂ = ∂ ∂% %% % , (20) 

and 

 ( ) ( )( )( , ) ( , ) ( , )
| 1| 1| 1 ( )

ˆ ˆ'  ... '  't h t t h t t t k mh m
X Y Yμ λ μ λ μ λλ λ λ+ + − + × − +
∂ ∂ = ∂ ∂ ∂ ∂ 0% % %% % % . (21) 

                                                 
2 See the Appendix A for the derivation of ( , )B μ λ λ∂ ∂% %  in (19). 
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 We perform a grid search to find the values of h
μλ  for each forecasting horizon h and 

each model specification μ . We search for h
μλ  with 3 decimal places, which makes our grid 

search perform 4 steps as follow3: 
1.  Calculate the values of target variables ( , )

hTV μ λ%  and gradient ( , )
hTV μ λ λ∂ ∂% %  for each  

of 11 values of λ% , which are 0.001 and 1,2,…,10. Figure out the possible region of the 
hyperparameter value h

μλ  4. Let 1sλ  denote the lower bound of this region. 
2. Calculate the values of target variables ( , )

hTV μ λ%  and gradient ( , )
hTV μ λ λ∂ ∂% %  for each  

of 9 values of λ% , which are 1sλ +0.1, 1sλ +0.2,…, 1sλ +0.9. Figure out the possible region of the 
hyperparameter value h

μλ . Let 2sλ  denote the lower bound of this region. 
3.  Calculate the values of target variables ( , )

hTV μ λ%  and gradient ( , )
hTV μ λ λ∂ ∂% %  for each  

of 9 values of λ% , which are 2sλ +0.01, 2sλ +0.02,…, 2sλ +0.09. Figure out the possible region of 
the hyperparameter value h

μλ . Let 3sλ  denote the lower bound of this region. 
4.  Calculate  the  values  of target variables ( , )

hTV μ λ%  for 9  values of λ% ,  which are  

3sλ +0.001, 3sλ +0.002,…, 3sλ +0.009. The suitable hyperparameter value h
μλ  is the one 

associated with the minimum value of ( , )
hTV μ λ%  from these 4 steps. 

  Table 3 reports the optimal hyperparameter h
μλ  with the associated values of target 

( , )
hTV μ λ%  and gradient, for each forecast horizon h and each model specification μ . The details of 

grid search can be found in Appendix B. 
 

                                                 
3 It is possible that our grid search may not return the optimal hyperparameter h

μλ  as defined in (15), if the 
function ( , )

hTV μ λ%  is not smooth. Regarding this problem, we have tried minimizing the function with respect to the value 
of λ%  for each forecast horizon h = 1,3,6,12 of the SMALL model, using the add-on application OPTMUM in GAUSS. 
It returns a similar result to our grid search. The use of this program, however, is not practical for larger models, as it 
consumes a lot of processing time even for our smallest model. 

4 This should be the region that has a negative gradient at its lower bound. This tells that the values in the 
region will generate smaller values of ( , )

hTV μ λ%  than one at the lower bound. 
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Table 3: h
μλ  from grid search and ( , )

hTV μ λ% , 1971 – 1980 

    SMALL CEE MEDIUM LARGE 

h
μλ  0.130 0.129 0.096 0.053 

( , )
hTV μ λ%  1.950 1.849 1.665 1.598 h = 1 

gradient 0.008 0.001 –0.000 0.029 

h
μλ  0.111 0.143 0.117 0.072 

( , )
hTV μ λ%  1.876 1.739 1.695 1.614 h = 3 

gradient 0.001 0.004 0.024 –0.008 

h
μλ  0.130 0.134 0.017 0.059 

( , )
hTV μ λ%  1.887 1.852 2.191 2.288 h = 6 

gradient 0.007 0.004 –0.350 –0.033 

h
μλ  0.102 0.049 0.020 0.006 

( , )
hTV μ λ%  1.912 1.896 2.254 2.483 h = 12 

gradient –0.000 –0.020 –0.672 –1.646 
 

 Using the suitable values h
μλ  from Table 3, we perform the out-of-sample assessment. 

Let 0t  and 1t  denote the position of January 1981 and December 2003, respectively, in the data 
set. We compute the forecast ( , )

|
ˆ h
t h tY

μμ λ
+  in each period t = 0t h− , …, 1t h−  (276 times) with VAR 

of order p = 13, using the most recent 10 years of observations (Rolling scheme, 120 
observations), and the parameter ε  at 1010− . These forecasts are used to calculate the relative 
MSFE in (14), for 3 variables of interest i = EMPL, FFR, and CPI. Table 4 reports the result of 
this assessment, with the associated values of ( , ) ( , )h h

h ii I
TV RMSFE

μ μμ λ μ λ
∈

=∑  and h
μλ . 

 Since our evaluation period has been changed from the previous section, we also 
construct Table 5 for the purpose of comparison. In this table, we use the same setting as in Table 
1 of the previous section, but the evaluation period has been changed to one from January 1981 
to December 2003.  
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 According to Table 4, the LARGE model gives the best overall performance. This 
supports the finding of BGR that larger Bayesian VARs perform better than smaller models in 
forecasting the three key macroeconomic variables. However, we see a significant difference 
between Table 4 and Table 5.   
 

     Table 4: BVARs with h
μλ , Out-of-Sample Relative MSFE, 1981 – 2003 

 

    SMALL CEE MEDIUM LARGE 
EMPL 0.53 0.62 0.53 0.49 
FFR 0.96 0.85 0.93 0.80 
CPI 0.62 0.60 0.57 0.53 

( , )h
hTV

μμ λ  2.104 2.067 2.025 1.822 
h = 1 

h
μλ  0.130 0.129 0.096 0.053 

EMPL 0.42 0.56 0.44 0.37 
FFR 1.23 1.06 1.13 0.95 
CPI 0.59 0.52 0.54 0.51 

( , )h
hTV

μμ λ  2.234 2.145 2.107 1.830 
h = 3 

h
μλ  0.111 0.143 0.117 0.072 

EMPL 0.53 0.77 0.63 0.49 
FFR 1.47 1.12 1.17 1.05 
CPI 0.62 0.51 0.43 0.50 

( , )h
hTV

μμ λ  2.612 2.391 2.225 2.045 
h = 6 

h
μλ  0.130 0.134 0.017 0.059 

EMPL 0.72 0.91 0.82 0.69 
FFR 1.47 1.24 1.75 1.75 
CPI 0.78 0.54 0.47 0.52 

( , )h
hTV

μμ λ  2.966 2.696 3.045 2.970 
h = 12 

h
μλ  0.102 0.049 0.020 0.006 
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Table 5: BVARs different λ , Out-of-Sample Relative MSFE, 1981 – 2003 

    SMALL CEE MEDIUM LARGE 

EMPL 0.81 0.68 0.54 0.47 
FFR 1.71 0.99 0.94 0.78 
CPI 0.83 0.64 0.57 0.54 

h = 1 

( , )
hTV μ λ  3.360 2.313 2.049 1.794 

EMPL 0.67 0.65 0.43 0.32 
FFR 1.74 1.43 1.12 0.89 
CPI 0.73 0.58 0.53 0.48 

h = 3 

( , )
hTV μ λ  3.132 2.649 2.077 1.689 

EMPL 0.89 0.95 0.62 0.45 
FFR 2.44 1.58 1.36 1.00 
CPI 0.77 0.59 0.48 0.47 

h = 6 

( , )
hTV μ λ  4.105 3.117 2.461 1.925 

EMPL 1.04 1.33 0.93 0.82 
FFR 3.18 1.63 1.40 1.64 
CPI 1.04 0.80 0.51 0.56 

h = 12 

( , )
hTV μ λ  5.266 3.761 2.840 3.014 

λ ∞ 0.262 0.108 0.035 
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 The results of Table 5 seem to indicate that adding more variables into the VAR helps to 
significantly improve its forecasting performances. The models with 7 and 20 variables perform 
much better than the 3-variables model. Since Bayesian or shrinkage estimation allows us to use 
all available information in making forecasts, adding as many data as possible like the LARGE 
model helps further improve the forecasting performances.  
 However, Table 4 shows that this impression is false. This is a result of allowing no 
shrinkage at all for the SMALL model. If we use Bayesian or shrinkage estimation with the 
SMALL model, the improvement of larger VARs over the 3-variables VAR becomes minimal. 
Specifically, the 7-variables and 20-variables models do not seem to have a clear edge over the 3-
variables model, and the improvement of the 131-variables VAR is much less pronounced than 
what Table 5 implies. This is also the case after we have tried to make the most out of each model 
given our pre-evaluation period. 
 

5.   Repeated Calculations of Hyperparameter Values 

It can be the case that the optimal hyperparameter value h
μλ  varies with time. Allowing 

some changes for the value may improve the forecasting performance of each Bayesian VAR. In 
this section, we allow this change every 10 years. We repeat our practice in the previous section 
of finding the suitable hyperparameter value after we have an additional 10 years of observations. 
 Table 6 reports the suitable hyperparameter value h

μλ  with the associated values of the 
target variable and gradient for each forecast horizon h and each model μ , using the observations 
from January 1971 to December 1990. Table 7 reports the same values, using the observations 
from January 1971 to December 2000. The suitable hyperparameter values reported in Table 6 
and Table 7 look different from the ones in Table 3 of the previous section. However, the values 
are relatively similar in these two tables.   
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Table 6: h
μλ  from grid search and ( , )

hTV μ λ% , 1971 – 1990 

    SMALL CEE MEDIUM LARGE 

h
μλ  0.164 0.102 0.078 0.044 

( , )
hTV μ λ%  2.003 1.920 1.793 1.666 h = 1 

gradient  –0.002   0.007  0.010 –0.069 

h
μλ  0.089 0.085 0.066 0.048 

( , )
hTV μ λ%  2.044 1.857 1.849 1.691 h = 3 

gradient –0.005 0.003 –0.036 –0.063 

h
μλ  0.059 0.066 0.022 0.043 

( , )
hTV μ λ%  2.195 1.986 2.246 2.199 h = 6 

gradient –0.030 0.014 0.033 –0.002 

h
μλ  0.073 0.055 0.047 0.005 

( , )
hTV μ λ%  2.407 2.227 2.691 2.772 h = 12 

gradient 0.018 0.064 0.126 12.717 
 

Table 7: h
μλ  from grid search and ( , )

hTV μ λ% , 1971 – 2000 
 

    SMALL CEE MEDIUM LARGE 

h
μλ  0.168 0.101 0.077 0.043 

( , )
hTV μ λ%  2.030 1.963 1.828 1.704 h = 1 

gradient –0.001 –0.007 0.015 –0.008 

h
μλ  0.098 0.083 0.062 0.046 

( , )
hTV μ λ%  2.045 1.877 1.852 1.699 h = 3 

gradient –0.002 –0.018 –0.018 0.096 

h
μλ  0.071 0.064 0.022 0.041 

( , )
hTV μ λ%  2.199 2.004 2.212 2.176 h = 6 

gradient 0.000 –0.010 –0.225 –0.028 

h
μλ  0.086 0.054 0.043 0.005 

( , )
hTV μ λ%  2.434 2.276 2.690 2.724 h = 12 

gradient –0.017 –0.004 0.134 4.146 
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 Next, we use the hyperparameter values from Table 3, Table 6, and Table 7 in assessing 
the out-of-sample forecasting performances of our Bayesian VARs. The values from Table 3 are 
used to make forecasts from January 1981 to December 1990. Ones from Table 6 are used for the 
forecasts from January 1991 to December 2000, and ones from Table 7 for January 2001 to 
December 2003. Table 8 reports the values of out-of-sample relative MSFE from this exercise. 
The variable hTV μ  represents the sum of relative MSFE of our variables of interest for model μ  
and forecast horizon h. Comparing the results in Table 8 and Table 4, we can see that our exercise 
only marginally improves the forecasting performances of the models. 
 

Table 8: BVARs with Varied λ , Out-of-Sample Relative MSFE, 1981 – 2003  

    SMALL CEE MEDIUM LARGE 

EMPL 0.53 0.62 0.53 0.49 
FFR 0.96 0.85 0.93 0.80 
CPI 0.62 0.60 0.57 0.53 

h = 1 

hTV μ  2.102 2.063 2.025 1.821 
EMPL 0.43 0.57 0.45 0.37 
FFR 1.23 1.05 1.12 0.95 
CPI 0.59 0.51 0.52 0.50 

h = 3 

hTV μ  2.241 2.133 2.090 1.819 
EMPL 0.58 0.79 0.61 0.48 
FFR 1.46 1.08 1.16 1.05 
CPI 0.60 0.49 0.44 0.50 

h = 6 

hTV μ  2.650 2.362 2.202 2.036 
EMPL 0.75 0.91 0.78 0.71 
FFR 1.46 1.24 1.73 1.76 
CPI 0.77 0.54 0.51 0.52 

h = 12 

hTV μ  2.987 2.693 3.018 2.987 



 26 

6.   An Updating Scheme for the Hyperparameter 

Another way to allow changes in hyperparameter values is to use an updating scheme 
that is sensitive to previous forecasting performances of the model. In this section, we apply an 
updating scheme that makes use of each additional observation in determining whether to change 
the hyperparameter value of a model. Such adaptive schemes will only improve forecasting 
performance if the underlying data generating process (DGP) is changing through time. What the 
“optimal” adaptive scheme will be depends on how the underlying DGP is changing over time. 
 Although there is a strong belief that there has been structural change in the economic 
system during our sample period, there is no precise information about how the parameters have 
changed. Therefore, instead of making an arbitrary assumption about what mechanisms may be  
governing such changes and then driving the optimal adaptive scheme for that mechanism, we 
consider an adaptive scheme that makes good sense to us. From the practice of forecasting, we 
know that adaptive schemes that give very high weight to new information often chase noises and 
do not perform very well. Hence, we consider the following scheme. 
 Let 0t  and 1t  represent the positions of January 1981 and December 2003, respectively. 
We start using the hyperparameter value of each model and each forecast horizon from Table 3. 
We use 

0,h t
μλ  to denote this initial hyperparameter value. Let ,h T

μλ  denote the value used in a 
given period T. At the start of each period 0 1[ , ]T t t∈ , we use a model μ  in making a forecast 

,( , )
|

ˆ h T
T T hY

μμ λ
− . At the end of the period T, after realizing the actual data TY , we calculate the square 

forecast error from the Bayesian VAR μ : 
 

 , ,( , ) , 2
, ; , |ˆ( )h T h T

i h T i T T T hSFE y y
μ μμ λ μ λ

−≡ − , (22) 

as well as the square forecast error from the benchmark model (0)
, ;i h TSFE  for each variable of 

interest i I∈ . 
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 We also calculate at this point in time the indicators: 

 

 
0

( , )
, ;( , )

; (0) (0)
, ; 0 , ;(276 )

i h T
h T T

i I i h t i h Tt t

SFE
INDC

SFE t T SFE

μ λ
μ λ

∈
=

≡
+ + −

∑
∑

, (23) 

 

for 3 values of the hyperparameter λ , which are ,h T
μλ , ,h T

μλ +0.001, and ,h T
μλ -0.001 5. We use the 

indicator ( , )
;h TINDC μ λ  to approximate the marginal increase in the sum of relative MSFE from 

using different values of λ  at time T. Observe that the term 
0

(0)
, ;

T
i h tt t

SFE
=∑  in the denominator 

increases as T increases. We put the term (0)
0 , ;(276 ) i h Tt T SFE+ − 6 into the denominator as well to 

make the value of ( , )
;h TINDC μ λ  relatively stable along the time T. Otherwise, the value ,h T

μλ  will 
experience greater fluctuations for a small T and be very stable for larger T, if we fix a constant 
threshold as in the following  .  
 Among these 3 hyperparameter values, we first choose the one that gives the minimum 
value of ( , )

;h TINDC μ λ . If it is ,h T
μλ λ= , we also use this value as , 1h T

μλ +  in the next period. 

Otherwise, for , ,{ 0.001, 0.001}h T h T
μ μλ λ λ∈ + − , if ( ,( , )

;
h T

h TINDC
μμ λ −  ( , )

;h TINDC μ λ ) is higher than 
0.0001 we use this new value as , 1h T

μλ +  in the next period. Observe that we can increase the 
fluctuation of the hyperparameter value ,h T

μλ  by increasing the step size (Currently at 0.001) and 
lowering the threshold value (Currently at 0.0001). Actually, we have made some experiments 
with a range of threshold values and step sizes. The settings reported here yields the best results. 
Note also that in this process we use the information up to period T to figure out the 
hyperparameter value , 1h T

μλ +  that will be applied in the next time period T+1.  

                                                 
5 We use step size equal to 0.001 in every case, except for the case of LARGE model with h = 12 that we use 

step size at 0.0005.  
6 Recall that 276 = t1 – t0 – 1 is the total number of repetitions in our out-of-sample exercise. 
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 At the end of the exercise, we calculate relative MSFE for each variable of interest i I∈  
from the square forecast errors ,( , )

, ;
h T

i h TSFE
μμ λ  calculated at the start of each period T. The relative 

MSFE can be written as: 
 

 
1 ,

0

1

0

( , )
, ;( )

, (0)
, ;

h tt
i h tt t

i h t
i h tt t

SFE
RMSFE

SFE

μμ λ

μ =

=

=
∑
∑

. (24) 

 

Table 9 reports the relative MSFE from this exercise.  

 Comparing Table 9 to Table 4, there is just a small improvement to the forecasting 
performance of each Bayesian VAR from this exercise. This improvement, however, does not 
affect our finding in Section 4 that the forecasting performances of the larger models are not 
impressively better than is the case in the smallest model.  
 

7.   Conclusion 

Bayesian or shrinkage estimation allows us to use all available information to forecast 
key economic indicators. BGR show us this point using the US data. The results of BGR, similar 
to our Table 1 or Table 5, implicitly imply that a 3-variables VAR is grossly inadequate. 

However, this impression is false and is a result of their practice of not allowing any 
shrinkage in the 3-variables model. This 3-variables VAR has 13 lags, estimated using 120 
observations. We have shown that if we use a shrinkage estimator for this 3-variables model with 
an appropriate hyperparameter value, the improvement of larger models will be minimal. 
Specifically, the 7-variables and 20-variables models considered in BGR do not seem to have a 
clear edge over the 3-variables model, and the improvement of the 131-variables model is much 
less pronounced than what BGR implies. 
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Table 9: BVARs with Varied λ , Out-of-Sample Relative MSFE, 1981 – 2003  

    SMALL CEE MEDIUM LARGE 

EMPL 0.53 0.62 0.52 0.48 
FFR 0.95 0.84 0.91 0.78 
CPI 0.61 0.60 0.57 0.53 

hTV μ  2.098 2.053 2.003 1.798 

h = 1 

,0h
μλ  0.130 0.129 0.096 0.053 

EMPL 0.42 0.56 0.43 0.36 
FFR 1.23 1.04 1.12 0.91 
CPI 0.59 0.52 0.53 0.48 

hTV μ  2.237 2.124 2.079 1.747 

h = 3 

,0h
μλ  0.111 0.143 0.117 0.072 

EMPL 0.53 0.77 0.44 0.47 
FFR 1.47 1.11 1.04 1.02 
CPI 0.62 0.50 0.50 0.49 

hTV μ  2.613 2.383 1.978 1.975 

h = 6 

,0h
μλ  0.130 0.134 0.017 0.059 

EMPL 0.72 0.92 0.81 0.57 
FFR 1.47 1.24 1.63 1.54 
CPI 0.78 0.54 0.46 0.44 

hTV μ  2.966 2.698 2.908 2.548 

h = 12 

,0h
μλ  0.102 0.049 0.020 0.006 
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 We try allowing for time-varying hyperparameter values as well, but the result we have 
found so far is that the time-varying scheme only marginally improves the performance of each 
model. It does not change our previous conclusion either. 
 In this study, we also demonstrate a way to calculate the suitable hyperparameter value 
for each model specification with a given forecast horizon. The value is chosen based on the out-
of-sample forecasting performances in the test period, which is a part of the pre-evaluation period. 
This process takes time for the LARGE model. The estimation of the LARGE model involves 
calculating for the inverse of matrix of dimension (1,704×1,704). Since we have to estimate the 
model 120 times for each value of λ  and each forecast horizon h in the grid search shown in the 
Appendix B, it costs us about 3 days for each of the 4 steps in the search under the computation of 
a Pentium Core 2 processor. The whole process of the grid search, which is composed of 4 steps, 
requires about two weeks. 
 In practice of course, we need to figure this suitable hyperparameter value just once. We 
think that this is the process that should be taken rather than depending on an arbitrarily chosen 
value. Moreover, as can be observed from Table 6 and Table 7, the value tends to be stable for a 
long enough series as in the case of US data. 
 It would be convenient if we could figure out some patterns of changes in the suitable 
hyperparameter values of the Bayesian VARs. For example, the values may decrease for longer 
forecast horizons or bigger model specifications. Our results so far have not shown any obvious 
pattern. However, a more thorough investigation in this direction is still interesting. 
 Another interesting way to deal with the hyperparameter value is to figure out a good 
updating scheme. The scheme that can calculate a suitable hyperparameter value after every 
additional realization looks very attractive for actual forecasting excercies. Unfortunately, this 
hyperparameter has a non-linear relationship with the forecasting performances of the model. One 
might have to depend on a relatively complicated framework to figure out an optimal updating 
scheme for the model.  
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Appendices 

A.    Gradient Matrix of the Coefficients 

To simplify the notation, let 1 'Z X X−≡ Ω +% . The posterior mean B  can be written as: 

 

 1 1( ' )B Z B X Y− −= Ω +% % . (A1) 

 

The derivative of B  with respect to λ  can be computed from: 
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 From Magnus and Neudecker (1999), the derivative of an inverse matrix of functions Z 

can be written as: 
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Since the matrix 'X X  is not a function of λ% , the derivative Z λ∂ ∂ %  is: 
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The derivative 1( )B λ−∂ Ω ∂ %% %  can also be written as: 
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and the value of 1 λ−∂Ω ∂ %%  is as in (A4).  

 Totally, from (A1) – (A5), we have: 
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