

DETERMINANTS OF ORGANIC FOOD PURCHASE: EVIDENCE FROM COSMOPOLITAN CITIES OF INDIA

*Sonali Malewar**

Marketing Department, Sri Balaji University, Pune, Maharashtra, India

Souren Koner

Royal School of Business, The Assam Royal Global University, Guwahati Assam, India

Tanushree Gupta

School of Commerce and Management Studies, Sandip University, Nashik Maharashtra, India

Received 14 January 2022, Received in revised form 20 April 2022,

Accepted 27 April 2022, Available online 8 May 2023

Abstract

This research paper aims to explore the important factors affecting the purchase intention of organic food in the cosmopolitan cities of India, with special reference to Delhi and Bangalore. The survey instrument questionnaire was created based on proven measures. Data were collected by using email and WhatsApp for the two cities considered for the study. The research structure is developed based on the extensive literature and reveals a structural relationship between constructs. Structural equation modeling is used to investigate the relationship between constructs. The conceptual model was developed and analyzed using five constructs and 22 attributes. Among these, the strongest factor was nutritional content, followed by convenience, consumer self-identity, and sensory appeal. The findings of this study have very important implications for all stakeholders of the organic food industry, in particular for the growers and the firms that intend to expand their arena in other cities of India.

Keywords: Organic food, consumer, purchase intention, Self-Identity, Sensory appeal

JEL Classifications: M310, M30

* **Corresponding author:** S.No.55/2-7, Tathawade, Off Mumbai-Bangalore, bypass, Pune, Maharashtra 411033 Email: sonali.malewar04@gmail.com

1. Introduction

Organic food has been one of the fastest growing industries in the last decade. The Indian organic food market is expected to grow at a CAGR of 20.54 percent, from \$849.5 million in 2020 to \$2601 million in 2026. ("India Organic Food Market Report and Forecast 2021-2026", 2021). Organic food is "produced by farmers who emphasize the use of renewable resources and the conservation of soil and water," according to the USDA (Gold, 2007). Customers are increasingly choosing organic foods, according to recent research (D'Amico et al., 2016; Lee and Yun, 2015; McFadden and Huffman, 2017). Argentina, Brazil, China, and Uruguay produce the most organic food, followed by India (Willer and Kilcher, 2009). Organic farming is new in India. By March 2020, nearly 2.78 million hectares of organically farmed land were planted in India, according to the Ministry of Agriculture and Farmers Welfare (Khurana and Kumar, 2020). Organic food consumption has skyrocketed in southern and eastern India, particularly in cities like Delhi and Bangalore (Willer and Kilcher, 2009). The use of chemical fertilizers, increased transportation, and storage costs lead to a higher cost and thus a smaller consumer database.

However, the lack of preservatives required for long-term storage has reduced farm production per hectare, and farmers are reluctant to forego the use of chemical fertilizers and pesticides. All of these complexities result in higher food prices for consumers, attracting only a niche market. The study's two cosmopolitan cities are Delhi and Bangalore. Waldron (2020) defined cosmopolitan as a way of being in the world, a way of constructing an identity about oneself that is different from, and arguably opposed to, the idea of belonging, devotion to, or immersion in a particular culture (Khurana and Kumar, 2020).

As a result of extensive research into the term "globalization" in the 1990s, the concept of cosmopolitanism has gained momentum. This phenomenon, which can be traced back to ancient Greece, was expected to generate new longitudinal opportunities and a dialectic bond between the region's residents and non-regional residents of the region (Appadurai, 1996; Giddens, 2013; Hannerz, 1996; Collier, 2010). As a result of the internet's widespread availability, the revolutionary expansion of communication technologies (Delanty, 2012), and the dominance of English as a global language (Held 2002), cosmopolitanism has taken on a new significance in the modern world, as evidenced by the "penetrability of boundaries" (Massey 1994, 165) and "horizontal integration" (Massey, 1994; Kearney 2004).

When it comes to choosing organic food items, the awareness of health consciousness, environmental consciousness, nutritional value, price, convenience, and sensory appeal are the most important considerations to consider. The positive relational embeddedness of organic food is explored in terms of nutritional value, environmental protection, trust, and purchasing intention, among other things (Liang, 2016). The existing research includes some inconsistencies and ambiguities, making it difficult to determine the true size of organic food consumers around the world (Yiridoe et al., 2005). During this epidemic, rapid development may be observed with the passage of time and changes in consumer preferences in eating habits, among other factors (Ćirić et al., 2020; Śmiglak-Krajewska and Wojciechowska-Solis, 2021). However, most of the published material on organic food purchasing behavior fails to fully reflect the gradual shift in attitudes toward where our food comes from and how it gets to our tables. According to the findings of several research studies conducted from an Indian perspective, appropriate personality constructs and relevant dimensions, key purchase intentions, and attitudes of organic food

consumers can be used effectively in surveys to better understand the purchasing behavior of the environmentally friendly organic food category in order to better protect the environment (Chakrabarti and Baisya, 2007; 2009). Indeed, the exploding popularity of organic food on a global scale, as well as its rapid expansion, raises certain concerns in the minds of stakeholders such as growers, distributors, retailers, consumers, governments, and marketers, prompting them to ask some questions. For example, who is the consumer or producer of organic food and what are the factors that are influencing the consumption of organic foods (Hughner et al., 2007). The purpose of this study is to incorporate the findings of previously published research in order to arrive at solutions to the questions. The abstract of the evaluated literature is presented in a tabular manner in order to make it more understandable in the context of further investigation. In order to comprehend the situation, we must first recognize that different people interpret the term “organic” in a variety of dimensions as well as from a variety of perspectives. This will help us understand who the customers of organic food are. Organic foods are undervalued because customers' purchase decisions are based on erroneous understandings and perceptions about organic commodities (Hasimu et al., 2017).

Accordingly, the criteria are discovered and collated from existing studies in order to acquire ideas that might serve as the foundation for more in-depth studies on organic food consumption in the future. It is discovered that several thoughts which describe individual perceptions and notions that are associated with the eating of organic food exist.

2. Literature Review& Hypothesis Development

Organic food is free of chemicals because it is grown without the use of pesticides or chemical fertilizers. Unlike conventional foods, no chemicals are used to increase the size of organic fruits and vegetables. Organic food is becoming increasingly popular as it is beneficial to one's health. Customers are drawn to organic food for a variety of reasons. The current study focused on four factors that influence the purchase intensity of customers: sensory appeal, convenience, nutritional content, and customer self-identity. Several studies have found that the primary reasons for purchasing organic food are its nutritional content and packaging related to environmental protection (Hughner et al., 2007; Pauland, 2012; Rana and Paul, 2017). The desire to buy certified organic food has increased dramatically in developed and industrialized cities (Aschemann et al., 2007; Richter, 2008). Germany also demonstrates a favorable attitude toward organic food (Alvensleben, 1998). As a result, Nigerian consumers are more inclined to purchase organic food because of the food's nutritional value, flavor, lack of side effects, as well as superior quality. Eastern and Southern Europeans, for example, Italy, were less inclined to buy and eat organic food because of the decline in the organic trend in these regions (Dabbert et al., 2004; Padel et al., 2008). Organic food sales are on the rise, but in emerging countries like India, the trend is more noticeable (Paul and Rana, 2012). With such a large population of organic food lovers, India is the ideal market for organic food producers and distributors (Chakrabarti, 2010). Despite this, organic food purchases are mostly motivated by consumers' desire to improve their health because of its high nutritional content (Shepherd et al., 2005). The work was authenticated through extensive research assessment, which found that the following criteria had a significant impact. The goal is to determine if all four of these characteristics have an equivalent impact on organic food customers' purchasing intentions. Research studies have found a wide range of elements that influence customer behavior, but these four are the most prominent in this study.

Table 1: Definitions of the Constructs

S.No.	Factors	Definition	References
1.	Sensory Appeal	It is the psychological traits experienced by a consumer's sensory organs in the taste, appearance, and smell of the food that stimulates in-depth association with the food items consumed.	Steenkamp (1990); Steptoe et al. (1995); Furst et al. (1996)
2.	Convenience	It is a significant factor for the purchase of organic food, which refers to the easy availability, quick preparation, and value for money in accomplishing cooking tasks.	Lockie et al. (2004); Źakowska-Biemans (2011); Jang et al. (2011); Chen et al. (2014); Janssen (2018)
3.	Nutritional Content	It refers to food that contains more vitamins and minerals with a higher nourishing diet, promoting the well-being of living organisms.	Lee and Yun (2015); Liang (2016)
4.	Consumer Self-Identity	It is the reasonably persistent attributes that people impute to themselves that tend to be psychographic variables associated with social conscientiousness and sensitivity.	Sparks <i>et al.</i> (1997), Sparks and Shepherd (1992), Hustvedt and Dickson (2009)

Source: Compiled by authors

2.1 Sensory Appeal

In Steptoe *et al.* (1995), they said that consumers evaluate sensory qualities when making food decisions, even though their level of satisfaction may differ between organic and non-organic foods (Paul and Rana, 2012). A product's sensory appeal is based on its taste, look, and overall attraction to the consumer. Organic food sales and consumption are influenced by a variety of factors, including the appealing aroma and mouth-watering texture. Also, in developing economies like India, people are more concerned about the taste and texture of their organic food (Das *et al.*, 2020). Misra and Singh (2016) conducted research in Delhi and the National Capital Region (NCR) of Ghaziabad, Noida, and Faridabad (India) and found that the appeal of organic foods is impacted by consumer conviction in the product's safety and health benefits, trust and certification, knowledge and availability, and lifestyle. The latent factors like healthy eating, humanity, and the environment were focused on in the study conducted in Bangalore, south India (Nandi *et al.* 2016). Besides few studies have looked at the appeal of organic foods to consumers, animal welfare, food safety, quality, tradition, naturalness, and flavor, all of which are linked to better health (Davies *et al.*, 1995; Lakin and Shannon, 1999; Makatouni, 2002). The preceding discussion contributes to the development of the following hypothesis:

H₁: Seasonal appeal has a positive impact on the purchase intention of organic food.

Convenience

People around the world are embracing a more simple and convenient way of life. The taste and quality of organic food are not an excuse for skipping out on the ease of preparing and purchasing it. According to several studies, those who prioritize convenience over health tend to purchase less organic food (Botonaki et al., 2006; Hjelmar, 2011). Convenience orientation and organic food purchases were found to have no significant correlation in two further investigations (Lusk and Briggeman, 2009; Janssen, M, 2018). Organic food availability is just as crucial to customers as its quality and pricing are, according to research. When it comes to organic food purchasing decisions, the three most important factors to consider are "Certification," "Convenience," and "Sensory Appeal" (Chen et al., 2014). Based on the above discussion, the following hypothesis is proposed:

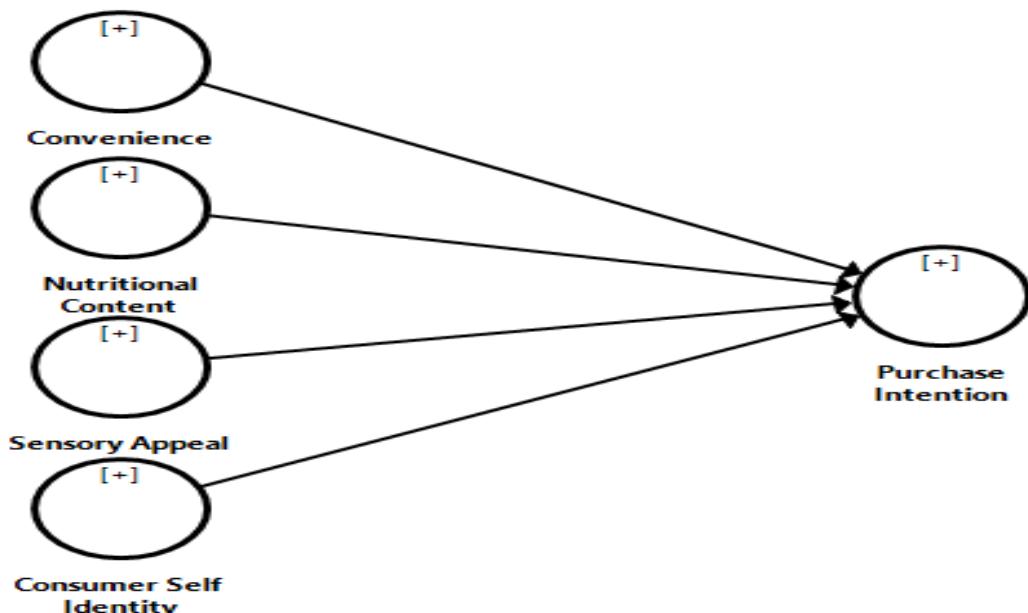
H₂: Convenience has a positive impact on the purchase intention of organic food.

2.3 Nutritional Content

There is a growing demand for organically grown food, yet there is a lack of research-based information on the nutritional value of the product. Inorganic vegetables are rich in bioactive components that have been linked to an increased risk of age-related disorders such as cardiovascular disease and a specific type of cancer (Riboli and Norat, 2003). According to the Q & Me (2018) survey, even though the percentage of people who buy organic food is small, a significant number of people are interested in doing so because of the superior nutritional value of organic food. An increase in organic food sales has been noticed over the past few decades since such items are primarily investigated for their nutritional value, which leads to a positive customer attitude toward buying intention (Lairon, 2010; Magkos et al., 2003; Shafie and Rennie, 2012). Additionally, there is no use of pesticides or chemicals in the manufacturing of organic food (Fotopoulos and Krystallis, 2002; Hughner et al., 2007). Some studies have found that consumers are more likely to buy organic food because of the superior nutrients found in organically grown foods (Hoefkens et al., 2010; Liang, 2016; Popa et al., 2019). Therefore, the following hypothesis is posited:

H₃: Nutritional value has a positive effect on the purchase intention of organic food.

2.4 Consumer Self-Identity


Individual purchasing intentions and overall consumer behavior have been shown to be linked to consumer self-identification. According to the study, consumers' preferences for identity-related products can be influenced using promotional grooming (Mercurio and Forehand, 2011). Self-identification is critical to organic consumption (Bartels and Hoogendam, 2011). To acquire a fuller understanding of consumer preferences, this study looked at how individual features of attitudes, perceived behavioral power, and standards combine to explain customers' intent to purchase organic commodities. According to Stok et al. (2014), self-identification as a person who eats a suitable number of vegetables influenced the association between social standards and vegetable consumption. A person's feelings of self-identification can be used to anticipate and influence consumer behavior. For instance, pro-environmental self-identification related organic consumption to "catalytic behaviors" like recycling, substituting transportation facilities, and decreasing resources (Thgersen and Lander, 2006). They are

also more likely to purchase eco-friendly products if they eat organic food (Bartels and Onwezen, 2013). Evidence reveals that those who identify as pro-environment and organic consumers are more likely to buy organic food, which is consistent with these trends (Bartels and Hoogendam, 2011; Hustvedt and Dickson, 2009; Sparks and Shepherd, 1992; Michaelidou and Hassan, 2008). Based on the above discussion, the following hypothesis is posited:

H4: Consumers' self-identity has a positive effect on purchase intention of organic food.

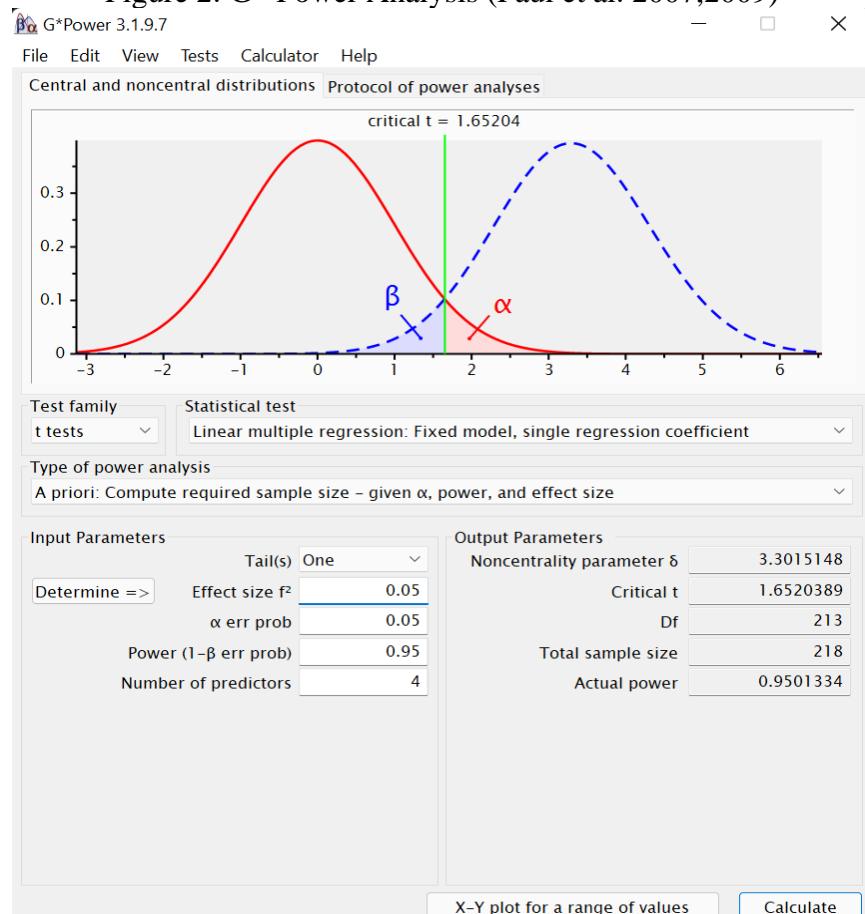
Thus, based on the above discussions, the purchase intensity of the customers towards organic food was investigated, and a proposed conceptual model was exposed in Figure 1.

Figure 1: Conceptual model

Source: Computed by authors

3. Research Methodology

The current study used a survey questionnaire to obtain data from participants. Between four and five items were utilized to measure each component. Table 2 explains where each item came from.


Table 2: The Origins of Items of Questionnaire

Variable	Items	Source
Sensory Appeal	5	Steenkamp (1990); Steptoe et al. (1995); Furst et al. (1996)
Convenience	5	Lockie et al. (2004); Źakowska-Biemans (2011); Jang et al. (2011); Chen et al. (2014); Janssen (2018)
Nutritional Content	5	Lee and Yun (2015); Liang (2016)
Consumer Self-Identity	3	Sparks and Guthrie (1998); Sparks and Shepherd (1992); Hustvedt and Dickson (2009)
Purchase Intention	4	Schäufele and Hamm (2018); Liang (2016)

Source: Computed by authors

The research framework is built based on the above literature and indicates a structural relationship between constructs. To study the link between constructs, structural equation modelling is applied. Structured Equation Modelling (SEM) can be used to determine the incidental relationship between two or more constructs (Hair et al., 2017; Bhatt and Shiva, 2020). The current study was conducted in Delhi and Bangalore, two of India's most populous cities. A pilot survey was conducted in the supermarket to check the reliability and validity of the questionnaire. After checking reliability and validity, the Google Form questionnaire was shared, and data was collected using snowball sampling method. The questionnaire was sent by email and WhatsApp to the respondents during the months of January to March of 2021 and asked the respondents to share this questionnaire with their friend circles who are staying in those two cities. The respondents were categorized demographically based on age from 20 to 60 years, qualification (schooling/under graduate/post graduate), occupation (employees from private and public sector), and monthly income (less than 10,000 to 50,000 and above). G*Power software (3.1.9.7 version) was utilized to validate the sufficiency of sample size in satisfying the essential condition of needed sample size (Faul, 2007; 2009; El-Manstrly et al., 2020; Shiva et al., 2020). According to G* Power software, for 4 independent variables for the true power of 0.95 requires a minimum sample size of 218 respondents. However, the research employed a sample size of 265 respondents, which meets the acceptable sample size criteria (Faul, 2007, 2009; El-Manstrly et al., 2020; Shiva et al., 2020). Figure 2 shows the minimum sample size estimates based on the assumptions made in the previous section.

Figure 2: G* Power Analysis (Faul et al. 2007,2009)

Source: Author's Calculation

4. Results

The initial step is employing the PLS-SEM approach to check the reliability and validity of the data (Hair et al., 2017). The reliability and convergent validity of the data is examined using factor loading, Cronbach's alpha, Dijkstra and Henseler's rho A, Composite Reliability (CR), and Average Variance Extracted (AVE). AVE must be larger than 0.5 in order to indicate convergent validity, whereas factor loading and rho A must be greater than 0.7 to demonstrate internal reliability (Ali et al., 2018; Hair et al., 2017, 2020; Koner et al., 2021; Shiva et al., 2020). The results of the reliability and convergent validity tests for all the reflective constructs are shown in Table 3 of this report. Most of them have factor loading, Cronbach alpha, rho A, CR, and AVE values that are over the threshold level. Table 3 shows that the factor loadings for the first items of seasonal appeal are .692, which is below the threshold limit, and that Cronbach's Alpha and rho A for the purchase intention construct are less than the threshold limit (<.07), but they are acceptable because the CR and AVE of both constructs are above the threshold limit (Nunnally, 1978; Hair et al., 2017; Tajeddini et al., 2021).

Table 3: Quality Criterion for Reflective Model Assessments

Construct	Items	Type	Loading/Weights	Cronbach's	Rho		CR	AVE
					Alpha	A		
Purchase Intension	PI2		0.761					
	PI3	Reflective	0.845	0.675	0.685	0.822	0.607	
	PI4		0.728					
Convenience	Conv1		0.804					
	Conv2		0.714					
	Conv3	Reflective	0.736	0.803	0.807	0.863	0.558	
	Conv4		0.730					
	Conv5		0.747					
Nutritional Content	NC1		0.891					
	NC2		0.761					
	NC3	Reflective	0.753	0.868	0.887	0.905	0.656	
	NC4		0.804					
	NC5		0.833					
Seasonal Appeal	SA1		0.692					
	SA2		0.705					
	SA3	Reflective	0.798	0.805	0.806	0.860	0.551	
	SA4		0.750					
	SA5		0.762					
Consumer Self Identity	CSI1		0.836					
	CSI2	Reflective	0.765	0.712	0.731	0.837	0.631	
	CSI3		0.781					

Source: Author's Calculation

Fornell and Larcher (1981)'s measures of discriminant validity are also used in this research to demonstrate discriminant validity. In all cases, the inter-construct squared correlation values are greater than the estimates of variance retrieved (see Table 4). As a result, the research is ready for a final evaluation.

Table 4: First Order Constructs Measurement Assessment (Discriminant Validity)

	Consumer Self-Identity	Convenience	Nutritional Content	Purchase Intension	Sensory Appeal
Consumer Self Identity	0.795				
Convenience	0.230	0.747			
Nutritional Content	0.180	0.659	0.810		
Purchase Intension	0.287	0.640	0.655	0.779	
Sensory Appeal	0.265	0.136	0.145	0.222	0.742

Source: Author's Calculation

Additionally, the HTMT ratio was employed to investigate the discriminant validity. Discriminant validity establishes the relationship between the notions and their indicators (Gupta & Singh, 2021). The threshold limit for the HTMT value for all the constructs should be below 0.85, (Franke and Sarstedt, 2019; Henseler et al., 2014, 2015; Malewar & Bajaj, 2020) allowing for an acceptable value of 0.90 (Gold et al., 2001). In Table 5, the HTMT ratio of all the constructs is below the conservative threshold limit, which reflects the empirically determined uniqueness of all constructs. This suggests that the model is discriminately valid.

Table 5: HTMT Ratio of Correlations for Discriminant Validity Assessments

Constructs	Consumer Self-Identity	Convenience	Nutritional Content	Purchase Intension
Convenience	0.292			
Nutritional Content	0.227	0.782		
Purchase Intension	0.412	0.850	0.835	
Sensory Appeal	0.342	0.170	0.157	0.283

Source: Author's Calculation

4.1 Structural assessment model

The structural assessment model attempted to investigate the link between constructs and extrapolative results (Hair et al., 2017). Prior to that potential, collinearity among all the constructs was tested using the Variance Inflation Factor (VIF). The VIF values for convenience (1.810), nutritional content (1.779), sensory appeal (1.088) and consumer self-identity (1.088) are lower than the threshold limit of 3 (Hair et al., 2019). It explains that there is no collinearity issue with this model. The effect size (f^2), coefficient of determination (R^2), and cross- validated redundancy (Q^2) should all be considered when evaluating the model's quality in terms of its capacity to predict endogenous components (F. Hair Jr et al., 2014). The f^2 value can be used to assess the magnitude of the missing construct's influence on an endogenous construct, with 0.02, 0.15, and 0.35 signifying modest, medium, and large impacts, respectively (Cohen, 1988; Durlak, 2009; Koner et al., 2022). The effect size (f^2) of Consumer Self-Identity (0.025), and Convenience (0.136), have a considerable impact on the purchase intention, whereas the effect size (f^2) of Nutritional Content (0.19) has a medium effect on the Purchase Intention of customers toward organic food.

Rasoolimanesh (2019) stated that R^2 is a measure of the model's predictive accuracy. This is the general rule of thumb when it comes to acceptable R^2 , with a value of 0.75 defining considerable, a value of 0.50 defining moderate, and a value of 0.25

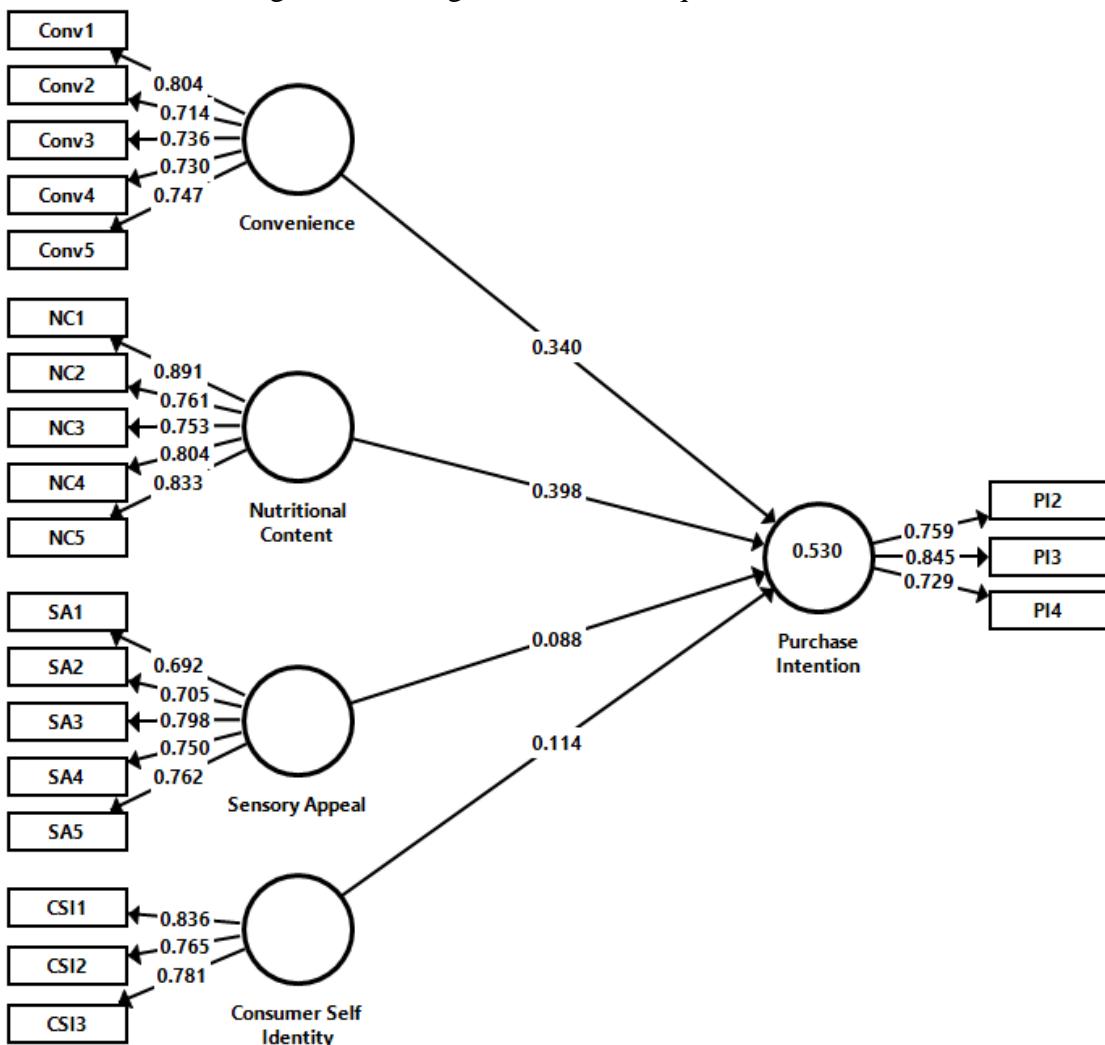
defining poor predictive accuracy (Hair et al., 2011; Henseler et al., 2009). An R^2 value of 0.53, as seen in Figure 3, means the model has a moderate predictive accuracy. The Stone-Geisser's Q^2 is used for assessing the inner model's predictive relevance (Geisser, 1975; Stone, 1974), and a value of Q^2 greater than 0.2 can be generalized and has substantial predictive power (Richter et al., 2016). The value of Q^2 (see Table 6) is 0.305, indicating that the model has a high degree of predictive capacity and can be generalized to a variety of future circumstances.

Table 6: The Calculation of Q^2

	SO	SSE	$Q^2 (=1-SSE/SSO)$
Consumer Self Identity	747	747	
Convenience	1245	1245	
Nutritional Content	1245	1245	
Purchase Intension	747	518.956	0.305
Sensory Appeal	1245	1245	

Source: Author's Calculation

After establishing the model's accuracy in terms of its ability to predict endogenous factors, the coefficient of the multiple regression analysis is assessed in order to ascertain the relationships between all the independent variables and the intention to purchase organic foods. The bootstrapping technique (with 5,000 samples) is used to test the hypotheses in the structural model. This method provides the significance of the route coefficient as well as the confidence intervals for the structural model's assumptions. The results of the structural model are shown in Table 7.


Table 7: Structural Model Assessments

Hypothesis		Path Relationships	Std. Beta	t-values	CI 2.5%	CI 97.5%	Accepted
H_1		Consumer Self Identity -> Purchase Intension	0.114*	2.534	0.027	0.202	Accepted
H_2		Convenience -> Purchase Intension	0.340**	5.909	0.223	0.451	Accepted
H_3		Nutritional Content -> Purchase Intension	0.398**	6.943	0.283	0.513	Accepted
H_4		Sensory appeal -> Purchase Intension	0.088	1.661	0.013	0.183	Rejected

Source: Author's Calculation

The findings back up three different possibilities. According to the findings in Table 7, Nutritional Content ($\beta=0.398$, p value=0.000), and Convenience ($\beta=0.340$, p value=0.000) have a significant positive influence on purchase intention of organic foods. Thus, the results demonstrated that the alternative hypotheses H_2 and H_3 were both accepted. On the other hand, Consumer Self Identity has a considerable positive effect on purchase intentions for organic foods, as evidenced by a Beta (β) of 0.114 and a p -value of 0.013, indicating that alternative hypothesis H_1 is well supported. However, the Sensory Appeal ($p > 0.05$) does not have any impact on the purchase intention of organic foods, explaining the rejection of alternative hypothesis H_4 . The global fit indices were also utilized to examine the quality of the criterion in more depth (Hair et al., 2020). The SRMR value (0.078) is below the threshold limit of 0.08 (Henseler et al., 2014; Hu & Bentler, 1999). It explains that the model in this study has high explanatory power.

Figure 3: Testing the Structural Equation Model

Source: Author's Calculation

5. Conclusion

According to the current research, organic food purchasing intentions are affected by a range of circumstances. It has been discovered that factors such as customer self-identification, nutrient content, and convenience all influence the likelihood that organic food will be purchased. However, the sensory appeal has little bearing on the purchase intention of organic food. Because customers are increasingly health-conscious these days, they are paying less attention to fake sensory appeal aspects (Sharma et al., 2020). Customers have become more health-conscious, particularly in the post-pandemic era. They are now looking for organic and healthy foods that will not hurt their health (Sharma et al., 2020).

Nutritional value came out on top, followed by ease of use, i.e., convenience and customer self-identity in a poll conducted in Bangalore and Delhi. It is crucial that organic food has a high level of nutritional value. As a result, the demand for organic food is on the rise (Dangour et al., 2019). Organic food has a favorable reputation among consumers because of its high nutritional value (Lairon, 2010). Consumers have been seen to perform research on the nutritional content of food before making a purchase (Shafie and Rennie, 2012). As a result, organic food sales are on the rise (Hughner et al., 2007).

Another important consideration in the decision to buy organic food is the convenience with which it may be obtained. Convenience is a trait of organic customers who are pragmatists. There must be a wide selection of organic foods available at the local store for this type of shopping behavior to take place (Hjelmar, 2011). Organic food is now widely available in supermarkets and other retail outlets, making it simple for consumers to stock up on it. Organic food purchases are influenced by a variety of factors, including the consumer's sense of self-identity as well as perceived health benefits. When it comes to buying organic food, the consumer's self-identity plays a role. Consumer behavior can be predicted and influenced by an individual's sense of self-identification (Hustvedt and Dickson, 2009). People who identify as environmentalists and organic eaters are more inclined to purchase organic food, according to research (Bartels and Hoogendam, 2011).

There is less attention to aroma, taste, and appearance when it comes to organic food because of the lack of importance of sensory appeal. According to Veeck and Burns (2005), this is the case. The enticing aroma and delectable texture of organic foods play a role in their popularity and sales. Research by Misra and Singh (2016) in Delhi and the National Capital Region (NCR) comprising Ghaziabad, Noida, and Faridabad (India) indicated that the attraction of organic foods is influenced by consumer confidence in the safety of the product. However, several previous studies have found that a person's desire to purchase organic food is influenced by their sense of taste and smell (Imtaz et al., 2021). According to a global study, buyers who buy organic food are often not motivated by its flavor or texture (Konvalina, 2012; Eynade et al., 2021; Magkos et al., 2007). Non-sensory characteristics such as the method of organic farming and the materials used in the manufacturing of organic products are more important to these purchasers since they are more concerned with safeguarding the environment and animals from extinction. (Stolz et al., 2010).

However, in this study, the impact of sensory appeal on purchase intention is small compared to the other characteristics that were considered. Because organic foods include more main vitamins and fewer additives and supplementary nutrients, they are more nutrient-dense than their conventional counterparts (Chen, 2007). Consumers are more inclined to buy a product that has a higher nutritional, convenience, and self-identity value than a product that does not (Scholderer and Grunert, 2005; Chen, 2014; Padel and Foster, 2005; Lea and Worsley, 2005).

It is expected that this study's findings will have a positive impact on the organic food supply chain. The organic food industry can reach a wider audience by teaching consumers about the health benefits of eating organic. Increased marketing efforts should be used to reach this market. Growing public awareness of organic food's benefits is key to the industry's expansion. When consumers gain more knowledge about the organic food sector, their attitudes toward it improve (Hoffmann and Schlicht, 2013). Make sure your clients realize the advantages of choosing organic. Provide an organic buying guide for potential customers. Make it clear to prospective clients why organics are more expensive.

References

Ali, F., Rasoolimanesh, S., Sarstedt, M., Ringle, C., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. *International Journal of Contemporary Hospitality Management*, 30(1), 514-538. <https://doi.org/10.1108/ijchm-10-2016-0568>

Alvensleben, R. (1998). Ecological Aspects of Food Demand: The Case of Organic Food in Germany. *AIR-CAT 4th Plenary Meeting: Health, Ecological and Safety Aspects in Food Choice*, 4.

Appadurai, A. (1996). *Modernity at large: Cultural dimensions of globalization* (1st ed.). Minneapolis, Minnesota: University of Minnesota Press.

Aschemann, J., Hamm, U., Naspetti, S. and Zanoli, R., (2007). The Organic Market. In: W. Lockeretz (Ed.), *Organic farming: An international history*. Wallingford: CABI, pp.123-151.

Bartels, J., & Onwezen, M. (2013). Consumers' willingness to buy products with environmental and ethical claims: The roles of social representations and social identity. *International Journal of Consumer Studies*, 38(1), 82-89. <https://doi.org/10.1111/ijcs.12067>

Bartels, J., & Hoogendam, K. (2011). The role of social identity and attitudes toward sustainability brands in buying behaviors for organic products. *Journal Of Brand Management*, 18(9), 697-708.

Bhatt, S., & Shiva, A. (2020). Empirical examination of the adoption of zoom software during Covid 19 pandemic: Zoom TAM. *Journal of Content, Community & Communication*, 12(6), 70-88.

Botonaki, A., Polymeros, K., Tsakiridou, E., & Mattas, K. (2006). The role of food quality certification on consumers' food choices. *British Food Journal*, 108(2), 77-90. <https://doi.org/10.1108/00070700610644906>

Chakrabarti, S. (2010). Factors influencing organic food purchase in India- expert survey insights. *British Food Journal*, 112(8), 902-915. <https://doi.org/10.1108/00070701011067497>

Chakrabarti, S., & Baisya, R.K. (2007). Purchase motivations and attitudes of organic food buyers. *Decision*, 34(1), 1-22.

Chakrabarti, S., & Baisya, R.K. (2009). Purchase of organic food: Role of consumer innovativeness and personal influence related constructs. *IIMB Management Review*, 21(1), 18-29.

Chen, J., Lobo, A., & Rajendran, N. (2014). Drivers of organic food purchase intentions in mainland China- evaluating potential customers' attitudes, demographics and segmentation. *International Journal of Consumer Studies*, 38(4), 346-356. <https://doi.org/10.1111/ijcs.12095>

Chen, M. (2007). Consumer attitudes and purchase intentions in relation to organic foods in Taiwan: Moderating effects of food-related personality traits. *Food Quality and Preference*, 18(7), 1008-1021. <https://doi.org/10.1016/j.foodqual.2007.04.004>

Ćirić, M., Ilić, D., Ignjatijević, S., & Brkanlić, S. (2020). Consumer behaviour in online shopping organic food during the Covid-19 pandemic in Serbia. *Food And Feed Research*, 47(2), 149-158.

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nded). Hillsdale, NJ: Lawrence Erlbaum Associates.

Collier, S. J. (2008). *Global assemblages: Technology, politics, and ethics as anthropological problems*. Germany: Wiley.

Dabbert, S., Haring, A.M., & Zanoli, R. (2004). Organic farming policies and prospects. Zed Books, London.

D'Amico, M., Di Vita, G., & Monaco, L. (2016). Exploring environmental consciousness and consumer preferences for organic wines without sulfites. *Journal Of Cleaner Production*, 120, 64-71. <https://doi.org/10.1016/j.jclepro.2016.02.014>

Dangour, A., Dodhia, S., Hayter, A., Allen, E., Lock, K., & Uauy, R. (2009). Nutritional quality of organic foods: A systematic review. *The American Journal of Clinical Nutrition*, 90(3), 680-685.

Das, S., Chatterjee, A., & Pal, T. (2020). Organic farming in India: A vision towards a healthy nation. *Food Quality and Safety*, 4(2), 69-76.

Davies, A., Titterington, A., & Cochrane, C. (1995). Who buys organic food? *British Food Journal*, 97(10), 17-23. <https://doi.org/10.1108/00070709510104303>

Delanty, G. (2012). Introduction. In *Routledge Handbook of Cosmopolitanism Studies*, edited by G. Delanty, 1–8. London: Routledge.

Durlak, J. (2009). How to select, calculate, and interpret effect sizes. *Journal Of Pediatric Psychology*, 34(9), 917-928. <https://doi.org/10.1093/jpepsy/jsp004>

El-Manstrly, D., Ali, F., & Steedman, C. (2020). Virtual travel community members' stickiness behaviour: How and when it develops. *International Journal of Hospitality Management*, 88, 1-11. <https://doi.org/10.1016/j.ijhm.2020.102535>

Eyinade, G.A., Mushunje, A., Folaranmi, S., & Yusuf, G. (2021). The willingness to consume organic food: A review. *Food and Agriculture Immunology*, 32(1), 78-104.

Hair, J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM). *European Business Review*, 26(2), 106-121. <https://doi.org/10.1108/ebr-10-2013-0128>

Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal Of Marketing Research*, 18(1), 39. <https://doi.org/10.2307/3151312>

Fotopoulos, C., & Krystallis, A. (2002). Purchasing motives and profile of the Greek organic consumer: A countrywide survey. *British Food Journal*, 104(9), 730-765. <https://doi.org/10.1108/00070700210443110>

Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: A comparison of four procedures. *Internet Research*, 29(3), 430-447.

Furst, T., Connors, M., Bisogni, C., Sobal, J., & Falk, L. (1996). Food choice: A conceptual model of the process. *Appetite*, 26(3), 247-266.

Geisser, S. (1975). The predictive sample reuse method with applications. *Journal of the American Statistical Association*, 70(350), 320-328.

Giddens, A. (2013). *The Consequences of Modernity*. Germany: Wiley.

Gold, M. (2007). *Organic Production/Organic Food: Information Access Tools*. National Agricultural Library. Retrieved from <https://www.nal.usda.gov/afsic/organic-productionorganic-food-information-access-tools#define>.

Gupta, T. (2021). Repayment Performance of Self Help Groups in Uttar Pradesh: An Empirical Investigation, *Journal of Asian and African Studies*, 57(2), 182-197, <https://doi.org/10.1177/00219096211007155>

Hair, J. F., Astrachan, C. B., Moisescu, O. I., Radomir, L., Sarstedt, M., Vaithilingam, S., & Ringle, C. M. (2021). Executing and interpreting applications of PLS-SEM:

Updates for family business researchers. *Journal of Family Business Strategy*, 12(3).

Hair, J., Black, W., Babin, B., & Anderson, R. (2010). *Multivariate data analysis* (5th ed.). Prentice Hall.

Hair, J., Hollingsworth, C., Randolph, A., & Chong, A. (2017). An updated and expanded assessment of PLS-SEM in information systems research. *Industrial Management & Data Systems*, 117(3), 442-458. <https://doi.org/10.1108/imds-04-2016-0130>

Hair, J., Ringle, C., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. *Journal Of Marketing Theory and Practice*, 19(2), 139-152.

Hair, J., Risher, J., Sarstedt, M., & Ringle, C. (2019). When to use and how to report the results of PLS-SEM. *European Business Review*, 31(1), 2-24. <https://doi.org/10.1108/ebr-11-2018-0203>

Hannerz, U. (1996). *Transnational connections*. London: Routledge.

Hasimu, H., Marchesini, S., & Canavari, M. (2017). A concept mapping study on organic food consumers in Shanghai, China. *Appetite*, 108, 191-202.

Held, D. (2002). Culture and political community: National, global, and cosmopolitan. In *Conceiving Cosmopolitanism: Theory, Context, and Practice*, edited by S. Vertovec and R. Cohen, 48–58. Oxford: Oxford University Press

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. *Advances in International Marketing*, 20, 277–319. [https://doi.org/10.1108/S1474-7979\(2009\)0000020014](https://doi.org/10.1108/S1474-7979(2009)0000020014)

Henseler, J., Ringle, C., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of The Academy of Marketing Science*, 43(1), 115-135. <https://doi.org/10.1007/s11747-014-0403-8>

Hjelmar, U. (2011). Consumers' purchase of organic food products. A matter of convenience and reflexive practices. *Appetite*, 56(2), 336-344. <https://doi.org/10.1016/j.appet.2010.12.019>

Hoefkens, C., Sioen, I., Baert, K., De Meulenaer, B., De Henauw, S., ... & Van Camp, J. (2010). Consuming organic versus conventional vegetables: The effect on nutrient and contaminant intakes. *Food And Chemical Toxicology*, 48(11), 3058-3066.

Hoffmann, S., & Schlicht, J. (2013). The impact of different types of concerns on the consumption of organic food. *International Journal of Consumer Studies*, 37(6), 625-633. <https://doi.org/10.1111/ijcs.12044>

Hu, L., & Bentler, P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling: A Multidisciplinary Journal*, 6(1), 1- 55. <https://doi.org/10.1080/10705519909540118>

Hughner, R., McDonagh, P., Prothero, A., Shultz, C., & Stanton, J. (2007). Who are organic food consumers? A compilation and review of why people purchase organic food. *Journal of Consumer Behaviour*, 6(2-3), 94-110. <https://doi.org/10.1002/cb.210>

Hustvedt, G., & Dickson, M. (2009). Consumer likelihood of purchasing organic cotton apparel. *Journal of Fashion Marketing and Management: An International Journal*, 13(1), 49-65. <https://doi.org/10.1108/13612020910939879>

India Organic Food Market Report and Forecast 2021-2026. Expertmarketresearch.com. (2021). Retrieved from <https://www.expertmarketresearch.com/reports/india-organic-food-market>.

Jang, Y., Kim, W., & Bonn, M. (2011). Generation Y consumers' selection attributes and behavioral intentions concerning green restaurants. *International Journal of Hospitality Management*, 30(4), 803-811.

Janssen, M. (2018). Determinants of organic food purchases: Evidence from household panel data. *Food Quality and Preference*, 68, 19-28.

Kareklas, I., Carlson, J., & Muehling, D. (2014). I eat organic for my benefit and yours: Egoistic and altruistic considerations for purchasing organic food and their implications for advertising strategists. *Journal of Advertising*, 43(1), 18-32.

Kearney, J. (2010). Food consumption trends and drivers. *Philosophical transactions of the royal society B: biological sciences*, 365(1554), 2793-2807. doi: 10.1098/rstb.2010.0149

Kearney, M. (2004). *Changing fields of anthropology: From local to global*. Lanham, MD: Rowman & Littlefield Publishers.

Khurana, A., & Kumar, V. (2020). *On a tardy trail: State of organic farming in India*. Vikalpsangam. Retrieved 27 July 2021, from <https://vikalpsangam.org/article/on-a-tardy-trail-state-of-organic-farming-in-india/>.

Koner, S., Mondal, A. S., & Roy, R. (2021). Impact of Service Quality on Satisfaction. *International Journal of Asian Business and Information Management*, 12(3), 1-15. <https://doi.org/10.4018/ijabim.294103>

Koner, S., Roy, R., & Dewangan, J. K. (2022). An empirical investigation of the relationship between retail store attributes and customer satisfaction. *IITM Journal of Business Studies (JBS)*, 10(1), 126-144.

Konvalina, P., (Ed.). (2012). *Organic Farming and Food Production*. London: IntechOpen. <https://doi.org/10.5772/45848>

Lairon, D. (2010). Nutritional quality and safety of organic food. A review. *Agronomy For Sustainable Development*, 30(1), 33-41. <https://doi.org/10.1051/agro/2009019>

Lakin, M. ,& Shannon, P. (1999) *Export of frozen low-chemical and organic vegetables to East Asia and European Union: Interim Report*. Brisbane: Queensland Department of Primary Industries.

Lea, E., & Worsley, T. (2005). Australians' organic food beliefs, demographics and values. *British Food Journal*, 107(11), 855-869.

Lee, H., & Yun, Z. (2015). Consumers' perceptions of organic food attributes and cognitive and affective attitudes as determinants of their purchase intentions toward organic food. *Food Quality and Preference*, 39, 259-267.

Liang, R. (2016). Predicting intentions to purchase organic food: the moderating effects of organic food prices. *British Food Journal*, 118(1), 183-199. <https://doi.org/10.1108/bfj-06-2015-0215>

Lockie, S., Lyons, K., Lawrence, G., & Grice, J. (2004). Choosing organics: A path analysis of factors underlying the selection of organic food among Australian consumers. *Appetite*, 43(2), 135-146.

Lusk, J., & Briggeman, B. (2009). Food values. *American Journal of Agricultural Economics*, 91(1), 184-196. <https://doi.org/10.1111/j.1467-8276.2008.01175.x>

Magkos, F., Arvaniti, F., & Zampelas, A. (2003). Organic food: Nutritious food or food for thought? A review of the evidence. *International Journal of Food Sciences and Nutrition*, 54(5), 357-371. <https://doi.org/10.1080/09637480120092071>

Magkos, F., Arvaniti, F. & Zampelas, A. (2007). Organic food: Buying more safety or just peace of mind? A critical review of the literature. *Critical Review in Food Science and Nutrition*, 46(1), 23-56.

Makatouni, A. (2002). What motivates consumers to buy organic food in the UK? *British Food Journal*, 104(3/4/5), 345-352.

Malewar, S. And Bajaj, S. (2020). Acceptance of OTT Video Streaming Platforms In India During COVID-19: Extending UTAUT2 With Content Availability. *Journal Of Content, Community and Communication*, 12, 89-106, DOI:10.31620/JCCC.12.20/09.

Massey, D. B. (1994). *Space, Place and Gender*. Cambridge: Polity Press

McFadden, J., & Huffman, W. (2017). Willingness-to-pay for natural, organic, and conventional foods: The effects of information and meaningful labels. *Food Policy*, 68, 214-232. <https://doi.org/10.1016/j.foodpol.2017.02.007>

Mercurio, K., & Forehand, M. (2011). An interpretive frame model of identity-dependent learning: The moderating role of content-state association. *Journal of Consumer Research*, 38(3), 555-577.

Michaelidou, N., & Hassan, L. (2008). The role of health consciousness, food safety concern and ethical identity on attitudes and intentions towards organic food. *International Journal of Consumer Studies*, 32(2), 163-170.

Misra, R., & Singh, D. (2016). An analysis of factors affecting growth of organic food. *British Food Journal*, 118(9), 2308-2325.

Müller, T., Schuberth, F., & Henseler, J. (2018). PLS path modeling – a confirmatory approach to study tourism technology and tourist behavior. *Journal Of Hospitality and Tourism Technology*, 9(3), 249-266. <https://doi.org/10.1108/jhtt-09-2017-0106>

Nandi, R., Bokelmann, W., Gowdru, N., & Dias, G. (2016). Consumer motives and purchase preferences for organic food products: Empirical evidence from a consumer survey in Bangalore, South India. *Journal of International Food & Agribusiness Marketing*, 28(1), 74-99.

Nunnally, J. C. (1978). *Psychometric theory*. New York: McGraw-Hill Inc.

Padel, S., & Foster, C. (2005). Exploring the gap between attitudes and behaviour. *British Food Journal*, 107(8), 606-625.

Padel, S., Jasinska, A., Rippin, M., & Schaack, D. (2008). The European market for organic food in 2006. In H. Willer, M. Yussefi-Menzlerand, N. Sorensen (Eds), *The World of Organic Agriculture – Statistics and Emerging Trends*, (pp. 131-139). London: Earthscan.

Paul, J., & Rana, J. (2012). Consumer behavior and purchase intention for organic food. *Journal of Consumer Marketing*, 29(6), 412-422. <https://doi.org/10.1108/07363761211259223>

Popa, M., Mitelut, A., Popa, E., Stan, A., & Popa, V. (2019). Organic foods contribution to nutritional quality and value. *Trends In Food Science & Technology*, 84, 15-18.

Q&Me (2018). *Vietnam Market Research Report - Vietnam EC market 2018/Q&ME Asia Plus Inc*. <https://qandme.net/en/report/vietnam-ec-market-2018.html>

Rana, J., & Paul, J. (2017). Consumer behavior and purchase intention for organic food: A review and research agenda. *Journal Of Retailing And Consumer Services*, 38, 157-165. <https://doi.org/10.1016/j.jretconser.2017.06.004>

Rasoolimanesh, S., Md Noor, S., Schuberth, F., & Jaafar, M. (2019). Investigating the effects of tourist engagement on satisfaction and loyalty. *The Service Industries Journal*, 39(7-8), 559-574.

Riboli, E., & Norat, T. (2003). Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. *The American Journal of Clinical Nutrition*, 78(3), 559S-569S.

Richter, N., Cepeda, G., Roldán, J., & Ringle, C. (2015). European management research using Partial Least Squares Structural Equation Modeling (PLS-SEM). *European Management Journal*, 33(1), 1-3. <https://doi.org/10.1016/j.emj.2014.12.001>

Richter, T. (2008). Trends in the organic retailing sector in Europe 2007. In: Willer, H., Menzler, M. & Sorensen, N. (Eds), *The World of Organic Agriculture – Statistics and Emerging Trends* (pp. 140-147). Routledge, UK.

Schäufele, I., & Hamm, U. (2018). Organic wine purchase behaviour in Germany: Exploring the attitude-behaviour-gap with data from a household panel. *Food Quality and Preference*, 63, 1-11. <https://doi.org/10.1016/j.foodqual.2017.07.010>

Scholderer, J., & Grunert, K. (2005). Consumers, food and convenience: The long way from resource constraints to actual consumption patterns. *Journal Of Economic Psychology*, 26(1), 105-128. <https://doi.org/10.1016/j.jeop.2002.08.001>

Shafie, F., & Rennie, D. (2012). Consumer perceptions towards organic food. *Procedia - Social and Behavioral Sciences*, 49, 360-367. <https://doi.org/10.1016/j.sbspro.2012.07.034>

Sharma, M., Purohit, R., & Patel, H.R. (2020). Evaluating the role of health consciousness in organic food product consumption: Mediating role of attitude, *GFJMR*, 20(1), 12-22.

Shepherd, R., Magnusson, M., & Sjödén, P. (2005). Determinants of consumer behavior related to organic foods. *AMBIO: A Journal of The Human Environment*, 34(4), 352-359. <https://doi.org/10.1579/0044-7447-34.4.352>

Shiva, A., Narula, S., & Shahi, S. (2020). What drives retail investors' investment decisions? Evidence from no mobile phone phobia (Nomophobia) and investor fear of missing out (I – Fomo). *Journal of Content, Community and Communication*, 11(10), 2-20. <https://doi.org/10.31620/jccc.06.20/02>

Śmiglak-Krajewska, M., & Wojciechowska-Solis, J. (2021). Consumer versus organic products in the COVID-19 pandemic: Opportunities and barriers to market development. *Energies*, 14(17), 1-22.

Sparks, P., & Shepherd, R. (1992). Self-identity and the theory of planned behavior: Assessing the role of identification with "Green Consumerism". *Social Psychology Quarterly*, 55(4), 388-399. <https://doi.org/10.2307/2786955>

Steenkamp, J. (1990). Conceptual model of the quality perception process. *Journal of Business Research*, 21(4), 309-333. [https://doi.org/10.1016/0148-2963\(90\)90019-a](https://doi.org/10.1016/0148-2963(90)90019-a)

Steptoe, A., Pollard, T., & Wardle, J. (1995). Development of a measure of the motives underlying the selection of food: The food choice questionnaire. *Appetite*, 25(3), 267-284. <https://doi.org/10.1006/app.1995.0061>

Stok, F., Verkooijen, K., de Ridder, D., de Wit, J., & de Vet, E. (2014). How norms work: Self-identification, attitude, and self-efficacy mediate the relation between descriptive social norms and vegetable intake. *Applied Psychology: Health and Well-Being*, 6(2), 230-250.

Stolz, H., Jahrl, I., Baumgart, L., & Schneider, F. (2010). *Sensory Experiences and Expectations of Organic Food* (pp. 35-40)., Frick and Frankfurt: Research Institute of Organic Agriculture (FiBL). Retrieved from https://orgprints.org/id/eprint/20233/1/deliverable_4_2_consumer_research.pdf

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. *Journal of The Royal Statistical Society: Series B (Methodological)*, 36(2), 111-133. <https://doi.org/10.1111/j.2517-6161.1974.tb00994.x>

Tajeddini, K., Mostafa Rasoolimanesh, S., Chathurika Gamage, T., & Martin, E. (2021). Exploring the visitors' decision-making process for Airbnb and hotel accommodations using value-attitude-behavior and theory of planned behavior. *International Journal of Hospitality Management*, 96, (pp. 35-40), <https://doi.org/10.1016/j.ijhm.2021.102950>

Theuer, R. C. (2006). Do organic fruits and vegetables taste better than conventional fruits and vegetables?. *State of Science Review, The Organic Center*, 50.

Thøgersen, J., & Ölander, F. (2006). To what degree are environmentally beneficial choices reflective of a general conservation stance?. *Environment And Behavior*, 38(4), 550-569. <https://doi.org/10.1177/0013916505283832>

Veeck, A., & Burns, A. (2005). Changing tastes: The adoption of new food choices in post-reform China. *Journal of Business Research*, 58(5), 644-652. <https://doi.org/10.1016/j.jbusres.2003.08.009>

Waldron, J. (2000). What is Cosmopolitan?. *Journal of Political Philosophy*, 8(2), 227-243.

Wier, M., O'Doherty Jensen, K., Andersen, L., & Millock, K. (2008). The character of demand in mature organic food markets: Great Britain and Denmark compared. *Food Policy*, 33(5), 406-421.

Willer, H., & Kilcher, L. (Eds) (2009), *The World of Organic Agriculture – Statistics and Emerging Trends 2009*, IFOAM, Bonn; FiBL, Frick; ITC, Geneva.

Yin, S., Wu, Linhai, Du, l. & Chen, M. (2010). *Consumers' purchase intention of organic food in China*. *Journal of the Science of Food and Agriculture*, in press, <https://doi.org/10.1002/jsfa.3936>.

Yiridoe, E., Bonti-Ankomah, S., & Martin, R. (2005). Comparison of consumer perceptions and preference toward organic versus conventionally produced foods: A review and update of the literature. *Renewable Agriculture and Food Systems*, 20(4), 193-205.

Żakowska-Biemans, S. (2011). Polish consumer food choices and beliefs about organic food. *British Food Journal*, 113(1), 122-137.