

Filipino Physics Teachers' Teaching Challenges and Perception of Essential Skills for a Supportive Learning Environment

Kim Diate and Ivy Claire V. Mordeno

Mindanao State University – Iligan Institute of Technology, Iligan, Philippines
 Corresponding author email: kim.diate@g.msuit.edu.ph
ivyclaire.mordeno@g.msuit.edu.ph

Received: June 03, 2021 Revised: August 26, 2021 Accepted: August 28, 2021

Abstract. The 2018 result of the Programme for International Students Assessment (PISA) shows below-average Filipino students' scientific literacy. Trends in International Mathematics and Science Studies (TIMSS) show the same result even after implementing the country's revised basic education curriculum. These findings from international assessments call for researchers and policymakers to analyze the possible interplay of curricular variables contributing to the Filipino students' challenged scientific literacy. This research article employs descriptive research methodology to describe the existing phenomenon of interest, the present teaching and learning status quo. Physics teachers from various provinces in Mindanao participated in a semi-structured interview, and their responses were subjected to thematic analysis. Analysis of their responses led to the exposition of Filipino physics teachers' teaching challenges, and their perception of essential skills necessary for honing a supportive learning environment. The results reveal that the skills teachers stipulated as essential for a supportive classroom are also the same set of skills that they find challenging in developing in their physics classes. The paper also discusses auxiliary challenges that may have impacted the quality of classroom instruction, which can help shed light on the below-average performance of students in international assessments.

Keywords: physics education; challenges; Philippine; teacher's experience; successful physics classroom

1. Introduction

The low student achievement in Physics of Filipino students is not a new trend in Philippine education. Local studies have long documented this physics education dilemma (Orleans, 2007). International evaluations on the quality of science, mathematics, and reading of Filipino students enrolled in basic education, such as the International Association for the Evaluation of Educational Achievement in 2004, were reported below the international standards threshold. The latest 2018 Programme for International Student Assessment (PISA) result shows that Filipino students' Mathematical and Scientific Literacy falls below the average standard set by the Organization for Economic Cooperation and Development (OECD). Department of Education (DepEd), as the countries' primary basic education institution, is very keen on

recognizing the relevance of PISA and TIMSS's results. In its official statement, the institution (DepEd) has assured the public of its introspection into the gaps and issues hindering the acquisition of the country's quality basic education. These international assessment results provide a fertile ground for introspection by educational researchers, practitioners, and policymakers. It is important to note that a comparison between the international competencies measured by TIMSS and the local competencies as stipulated by the K-12 curriculum showed remarkable disparity (Balagtas, et.al., 2019). In the sciences, competencies included in the assessment done by TIMSS were not present in the curriculum for that grade level but are present for the next grade level. Hence, it comes with a minor surprise that the evaluation would yield poor results. Equally important is the research's context of secondary education curriculum and not on primary education curriculum. Only primary education participated in the latest TIMSS and not the high school.

A complete understanding of this phenomenon is inarguably not a straightforward task. It possibly involves complex factors and complex relationships among variables that consequently led to the country's below-average performance in mathematics and scientific literacy. It is noteworthy that the Philippines transitioned from its 10-year basic education to 12-year basic education in 2013. With the Department of Education's ardent hope, its participation in the 2019 TIMSS could gauge the effectiveness of this new enhanced 12-year basic education curriculum and its delivery system.

This descriptive research aims to unravel and describe specific challenges physics teachers encounter in their attainment of the curriculum's learning outcomes and competencies. In line with the first research aim, the exposition of the teachers' perception of a supportive learning environment is also discussed in the paper. In addition, aligned with the goal of understanding challenges and perceptions on how we can structure a supportive learning environment, this paper also discusses the essential skills that teachers stipulated that their students must have and their challenges in developing these skills.

The problem of curricular competencies disparity between international assessment and our local curriculum is not the focus of this study. However, we have set our research on how our teachers are doing concerning the acquisition of our local curriculum. Setting the lens of our analysis on the actual classrooms will provide us with a perspective on the actual dynamics of teaching and learning and rid ourselves of the preconceived conceptions explaining science and mathematics achievement's status quo. The analysis is centered not on the intended or written curriculum such as that of Balagtas, et.al. 2019 but will focus on less looked upon aspects of the curriculum. These curricular aspects may be unknown to the researcher and will be deducted from the qualitative data through thematic coding.

In gathering the qualitative data, the semi-structured interview is purposively utilized to allow a maximum degree of freedom for the teachers to express their patterns of thoughts over the open-ended questions. In this manner, the researchers can directly probe into implicit reasoning in their responses and allow a thorough exposition of the teachers' viewpoint, reasoning, and thought patterns over critical questions on their classroom experience. This research article will allow researchers and science educators a radical exposition of the lived experiences of the physics teachers and their viewpoint on critical issues affecting the Philippine basic education classroom.

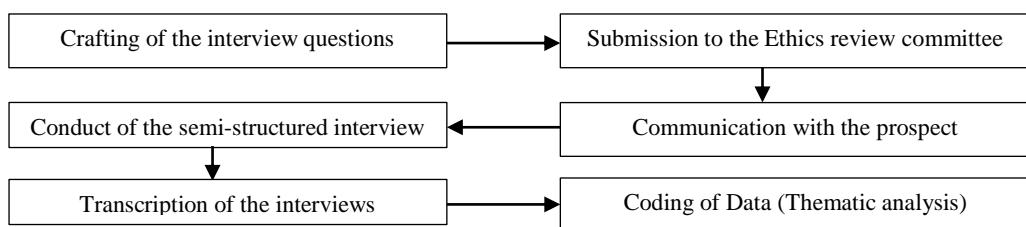
2. Review of Related Literature

Teaching the sciences at the secondary level is riddled with challenges that require the collaborative intervention of the local school administrators, teachers, and policymakers in the higher governing bodies. First-world countries such as the United States are not exempt from these challenges. In the context of physics education, teachers report that they experience insufficient funds for equipment and supplies, inadequate mathematical preparation of students, insufficiency on learning materials and lesson preparation, inadequate space for laboratories, time limitation in scheduling class and laboratories, as well as insufficient administrative support (Tesfaye & White, 2012). Europe, on the other hand, is on the other spectrum of the challenges, which mainly spans students motivation in pursuing science-related courses and mismatch between supply and demand in the context of the scientists as communicated in E.U. report : "Europe Needs More Scientist" (Osborne & Dillon, 2006; European Commission, 2015). The empirical fact that these leading countries experience undeniable challenges in science education logically hypothesizes that these challenges are also present, if not more pronounced in developing countries like the Philippines. However, research literature in the Philippine context that explores specific challenges and issues in a physics classroom is relatively scant in published literature. A plethora of local action research on this specific area of interest might exist but is not published. Hence, this paper serves as an opportunity for local researches on this specific area of interest to be cross-examined in different contexts within the country to see points of similarities, differences and raise opportunities for needs-specific policy generation in addressing this issue.

UNESCO Congress report in 1981 emphasizes the essential role of science education in both the formal and informal education sectors towards the improvement of the material and cultural state of the people's lives (UNESCO, 1981). Science education is a vehicle in developing human resources, modernization, and improvement of a country (Gödek, 2004). Needless to say that in our rapidly evolving generation, where science drives the wheel of technological development more than ever, the need to uphold and improve our science education at all educational levels proves to be the call of time. Education practitioners, global education initiatives, educational policymakers, and other education stakeholders must look into the current situation and trends in our science education to address the current demands as well as projected demands of the next generations in terms of science literacy and skills required to drive the wheel of development continually. As these developments accelerate, it places new demands on the government, business and civil institutions, and educational institutions to meet society's needs and the workplace (European Commission, 2015). Recent curricular revision of the Philippines, "R.A. 10533 : Enhanced Basic Education Act of 2013" shifts the country's ten (10) years basic education into the global standard of twelve (12) years of basic education. The curricular framework of the science curriculum upholds and is proactive towards the perceived role of science education in the context of global development. "The K to 12 science curriculum provides learners with a repertoire of competencies important in the world of work and knowledge-based society. It envisions the development of scientifically, technologically, and environmentally literate and productive members of society who are critical problem solvers, responsible stewards of nature, innovative and creative citizens, informed decision-makers, and effective communicators" (K to 12 Basic Education Curriculum Conceptual Framework, Department of Education). DepEd's participation in the 2019 Trends in International Mathematics and Science Study (TIMSS) is imbued with the department's hope to gauge the effectiveness of the enhanced basic education curriculum and its delivery systems (TIMSS & PIRLS International Study Center). However, the result showed unpromising results even with the recent curricular revision. For this reason, this study is made to

provide the personal perspective of the local teachers and their challenges in terms of their teaching and learning experiences.

Philippines' TIMSS result in 2003 is significantly higher than in 1999, and with the recent curricular shift, it hopes to gauge the effectiveness of this curriculum through participating in the 2019 TIMSS (TIMSS & PIRLS International Study Center). A certain mismatch is evident between the TIMSS competencies measured and the actual competencies stipulated in the enhanced basic education curriculum in the context of the written curriculum. (Balagtas et.al., 2019). In the specific discipline of Physics, some competencies that the TIMSS includes are not present in the competencies defined in the enhanced basic education curriculum for that specific grade level (Grade 8) but are present at higher grade levels. A specific example is a competency on explaining that mass remains constant during physical changes, which is absent in grade 8 but is a part of the competencies for grade 10. This relative competency-disparity is detailed in the work of Balagtas, et.al. which leads to some conclusions. One of which is, "Filipino students were under a curricular framework that emphasizes the domains of knowing and applying but less for reasoning both in Mathematics and Science".


Alongside the written curriculum, the supported curriculum is equally important in accounting for science education performance. The supported curriculum includes both the human dimension (teacher, students, stakeholders, administrative support, etc.) and the physical dimension (textbooks, workbook, technology support, learning resources, learning spaces, etc.). Supported curriculum plays a critical role in the development, implementation, and evaluation of the curriculum. It also transcends these roles to encompass effects on the quantity and nature of the leaned content (Glatthron, et.al., 2006).

In this study, we look into the challenges that the physics teachers perceive to be a deterrent towards achieving the curricular goals. Moreover, teacher practitioners deemed essential student skills as they implement the intended curriculum are also emphasized in the study.

3. Methodology

This paper employs a descriptive research design since it aims to describe the characteristics of a phenomenon (Gall, Gall, & Borg, 2007), which is the teaching and learning experience inside the Filipino physics classroom. As such, this paper concerns only provide an account of the phenomenon without necessarily explaining why it occurs. This descriptive research collects qualitative data through semi-structured interviews. Inductive exploration of the qualitative data allows the research to come up with recurring themes, concepts, and patterns that will be discussed in the light of the research's context.

A research flow diagram that summarizes the undertaking in this research is presented in figure 1.

Figure 3.1: Research flow diagram

3.1 Sample

Several teachers were sent letters of invitation to participate in the study along with the consent form explicitly stating the extent and nature of their involvement in the study and how their anonymity is secured. Among them, eight in-service physics teachers responded positively and undertook a semi-structured interview. The minimum inclusion criterion is that the teacher respondents must have taught physics in secondary schools for at least two (2) years. This ensures that they have an experiential grasp with which they will base their responses on the question. Moreover, this ensures that they have mandatorily undergone the Teacher Induction Program (TIP) by the Department of Education (DepEd). TIP is an institutionalized continuing professional development program designed to provide a comprehensive and systematic support system for teachers from 0-3 years of experience (DepEd). The teacher respondents' range of teaching experience ranges from 2 years to 11 years. Three (3) of which have master's degree in Science Education, four (4) are working with their master's degree, and one (1) bachelor's degree. They are scattered in three adjacent provinces in Mindanao, and the schools with which they are affiliated include rural and urban settings. Each of them is coded as follows [ISTI1,..., ISTI8], which means In-service teacher 1 and so on.

3.2 Instrument

The interview questions were carefully drafted and deliberated among the authors to ensure no leading question and the questions are as open-ended as possible. In the interest of probing into the implicit reasoning of the participants' responses to the questions, a semi-structured interview is fitting to exposit their patterns of thoughts to allow a more significant opportunity for expression. Here is an example of an interview question used in this study.

“As an educator, in what way can you provide an avenue for the development of necessary skills?”

For the complete questions used in the semi-structured interview, it is provided in the appendix section.

3.3 Ethics

Before the interview with the teacher respondents, the author submitted pertinent documents to the ethics review committee of the college for review. It includes the informed consent, which explicitly states the nature of the respondent's involvement, how their responses will be used in line with this research's goals, and how this data will be treated with utmost anonymity, such as public publication of their names and their affiliated schools. Any mention of specific identities of school administrators, faculty, staff, and students will be redacted in the interview transcription to protect their identities. Along with the informed consent are the structured abstract, interview protocol, and interview questions. These are all subject to the ethics review committee of the college before the data gathering.

3.4 Data Analysis

Recorded interviews were transcribed for qualitative analysis. The authors carefully read through individually transcribed interview responses, and anecdotes were taken. Individual anecdotes were further summarized in the second analysis cycle based on individual responses to the open-ended questions. In the third analysis cycle, patterns were deduced from their individual responses. When individual patterns were deduced from individual interviews, it is compared among the eight (8) responses to see which themes are interlinked and supported across the responses. This leads to the figures in this study that synthesize the themes from the quantitative analysis of data.

4. Findings and Discussion

This section deals with the discussion of the interview responses on the conducted semi-structured interview with in-service teachers. This will provide us with an overview of the challenges encountered in physics instruction, the skills they deemed essential to develop in the students, and how each of these constructs is related to each other. Although the sample cannot be taken as a complete representation of the population due to its small sample size, it can describe the in-service teachers' statuesque. This can serve as an essential piece of information that could help direct interventions and support that is aimed with their context.

4.1 Teachers' conception of a successful physics classroom

The teacher-respondents show a consensus that a successful physics classroom is tied with sufficient hands-on instrument. It is essential to point out that what they mean by an instrument is solely referring to "laboratory equipment" and less on other instruments such as computers, televisions, and projectors. It is also noteworthy that this is a typical response for both local and urban schools. This agrees with the belief that Physics is a discipline founded on a conceptual basis but is grounded on experimentation (Ince et.al., 2015). The emphasis is heavily stressed on the hands-on instrument and is evident in their responses, which could be evidence of its lack. Studies reveal that material insufficiency is one of the frequently experienced challenges in teaching Physics through hands-on methods. Consequently, teachers' rate of experimental application in class is meager (Onyesolu, 2009). To quote one of the verbatim responses of ISTI7, "It is very hard to let them understand if you will not use experiments. If you just keep on talk and talk, it is in vain, the students will not understand. You should be able to visualize and do hands-on. It is also documented that insufficient funding for equipment and supplies is the most severe concern for the secondary physics teachers (Tesfaye & White, 2007). This study is in the context of a U.S. classroom, a more affluent country in terms of financial resources. Suppose material and fund insufficiency persists on this country. In that case, it does not come as a surprise that it is also among the challenge grappled in developing countries, such as the Philippines.

Although the interviewed in-service teachers utilize alternatives such as simulations, videos, localized demonstrations, and materials, they use these to ameliorate the lack of a hands-on instrument. After analyzing the interview transcripts and how they respond to the questions, alternatives are their last resort. It could be avoided if hands-on equipment in Physics is available.

In addition to the necessity of instruments for a successful Physics classroom, the utilization of rich-activities in the classroom is another defining attribute of a successful Physics classroom. National Science Teacher Association (NSTA, 2007) highlighted the role of hands-on activities in improving students' acquisition of science skills and sustained interest. The respondents uphold the firm belief that interactive activities are indispensable for an ideal physics classroom. Moreover, in-service teachers argued that these activities must be anchored on real-life daily experiences of the learners. This allows students to easily relate to the learning material and be actively engaged since it is within their grasp of reality. They claimed that even abstract topics must be crafted with an activity that is relatable to the students, although they conceded that it is not always possible. The utilization of rich-activity such as laboratory experiments is one efficient means of comprehending complicated and abstract theories more straightforward with greater clarity (McDermott, 2001). The extent of real-life application is limited to the way activities are designed and the regular daily conversation of the students.

A respondent stressed that it is a mark of success in Physics instruction when the taught concepts are seen in the learners' daily conversational dialogues. This means that

the students recognized the mechanisms and physics principles at work as they observed their immediate surroundings and experiences.

Aside from these, respondents also expressed the need for innovative pedagogy. Innovative pedagogy is vital since the teacher who serves as a facilitator must be cautious in designing the learning environment. They argued that instruments and activities are rendered useless unless the teacher employs innovative pedagogy. Hence, it veers away from the traditional chalk-and-talk technique, which involves computer technology in instruction. As Edgar Dale pointed out in his second revision of the cone of experience in 1954, a teacher must consider carefully planning and using media in classroom instruction to create a rich learning experience. Dale describes a rich learning experience as a learning experience that revolves around more concrete level activities and considers the interplay of concrete and abstract levels depending on the classroom's need and the nature of the learning task (Garrett, 1997).

4.2 Skills teachers' deemed most important.

Norris and Ennis in 1989, defined critical thinking as rational thinking that is focused on decision making what to do and what to believe (Garcia, 2015). In a psychological context, it is defined as "the mental process, strategies and representations people use to solve problems, make decisions, and learn new concepts" (Sternberg, 2000; Lai, 2011). Critical Thinking is the most commonly cited skills by the respondents. It is reported that this is one of the skills where Filipino students are having difficulty with (Marquez, 2017; Ramos, 2018). The Manila Times article in 2018 shows the decline of Filipino critical thinking from an already low base. Researchers attributed this to the rote memorization present on the schools' pedagogy. Teachers' challenge in the students' critical thinking spans students' logical understanding of solving word problems, following logical inferences in a word problem, and rational decision-making in solving students' problems. On a more modest scale, teachers documented that simple analysis of video and simulations poses challenges to some learners. Hence, these teachers practice modifying the questioning patterns in the activity and simplifying what is meant to facilitate the learners' analysis and comprehension. Although it was reported to provide promising results in the students, the teacher's instructional time is consumed.

Table 1: Sample of participants translated responses on the theme of critical thinking

Participant	Response
ISTI 2	“...I need to simplify the discussion and instruction for them to the point that I don't give hard problems. For example, I always have word problems, that is always a part of my class, I really need to simplify the process”.
ISTI 3	“Other skills might include critical thinking, like when you play a video then you present follow up questions on it. It is important that they have critical thinking to analyze what they have observed in the video”.
ISTI 8	“...when we say 21 st century learners, they should be critical thinker, meaning it is more on themselves in learning the concept and less of the teacher giving them the concept. They should learn through discovering the concepts rather than being given by the teacher”.

Equally important is the skill of comprehension. In our context, respondents define comprehension as understanding the written texts, analyzing the given variables, and what is asked. Comprehension primarily needs the students' ability to read sentences and

make sense of what they are reading. Although relatively few, students who have not fully mastered the reading skills have reached high school. One respondent admitted that the result of Phil-IRI (Revised Philippine Informal Reading Inventory) in their school revealed that they have high school students who are non-readers. Phil-IRI is an assessment tool utilized by the Department of Education (DepEd) in measuring and gauging students' reading performance. DepEd recognizes literacy improvement as a pressing concern for the country's education and has launched its flagship program, "Every Child A Reader Program" in 2017. Although these studies do not claim representation of the country's population, evidence from interviewed teachers that the unmastered reading skills are persisting even in high school. Logically, the development of comprehension skills is hampered and rendered impossible because of the students' very fundamental problem of reading readiness.

Table 2: Sample of participants translated responses on the theme of comprehension

Participant	Response
ISTI 3	"One main problem is that my students especially grade 7 in public school, not just in my case but the same situation with other teachers and schools, the problem is they find it hard to comprehend since they do not know how to read... Aside from that on my end, I am perplexed how will I cope up such that they can understand".
ISTI 5	"Yes. It is very basic that they should know how to read but there are others also who knows how to read but they can't comprehend what they are reading".
ISTI 6	"...we are required to teach Science in English but not all can easily comprehend English. We really need to translate it into the vernacular in the way we discuss. Then in our exams it is on English, thus we really need to still use English. Overall, it is still language barrier"

In addition, to aid in the achievement of comprehension is the need for hands-on manipulation. According to the physics teachers, this is one of the most stressed attributes of a successful Physics classroom. The hands-on manipulation anchored on real-life situation activities leads to an easier understanding and appreciation of a concept. This is similar to McDermott's statement in 2011. A rich-learning activity such as a laboratory experiment is one efficient means of making the comprehension of complex and abstract theories simpler and more straightforward. Moreover, the skill of hands-on manipulation can be supported by the use of technology and computers. Most of the high-end laboratory equipment today utilizes computers to manipulate, gather, store and analyze data. Hence, basic computer skills are an essential skill in this technology-driven age in our educational context. Physics teachers have utilized PhET simulations and localization whenever an actual physics instrument is non-existent in the school. The use of simulations is their means of providing a closer experience to the real thing.

Table 3: Sample of participants translated responses on the theme of hands-on manipulation

Participant	Response
ISTI 1	“...when it comes to Physics, especially in this generation, I guess the students are having fun when they keep on using computers, when they are going to laboratories, and when they are having hands on activities together with their classmates”.
ISTI 3	“Very good ideas is to make something that the students can manipulate, where they can use it and make direct observations from it. It is good because it does not make learning passive. If it is more on the teacher and just the board, the students will lost interest in listening”.
ISTI 4	“It is nice and it must be that there are equipment in the school that the students can use.”. “We don’t have it. If there are equipment, it is usually for the senior high school and those are too advanced for our topics (junior high school)”.

Numeracy is also an essential skill that must be developed in the learners. It covers basic arithmetic operation, upgrading to algebraic manipulation, and its application in Physics contexts such as formula manipulation and problem-solving calculation. The majority of the respondents argued that the basic arithmetic skill is a fundamental skill that should have been developed before entering high school. However, this is not the case, and it further complicates the achievement of the curriculum's intended learning outcomes, especially on competencies that require mathematics skills.

Table 4: Sample of participants translated responses on the theme of numeracy

Participant	Response
ISTI 4	“I can’t proceed if the basic are not learned. That is why I have to go back on how to manipulate variables in an equation depending on what is asked in the problem. Then they will say, “Ah okay.” Then, the next day, they forget it”.
ISTI 7	“...they really need improvement on literacy and numeracy. It is very pressing concern on the improvement of their literacy and numeracy.

Overarching the core skills such as critical thinking skills, comprehension skills, and numeracy skills is problem-solving. Problem-solving, which is reported as an essential part of teaching Physics by the respondents, needs the development of critical thinking, comprehension, and numeracy as prerequisite skills. Thus, it poses a significant challenge for a teacher employing problem-solving in Physics when either one or all of these prerequisite skills are unmastered or underdeveloped. This relationship can be illustrated in the figure below.

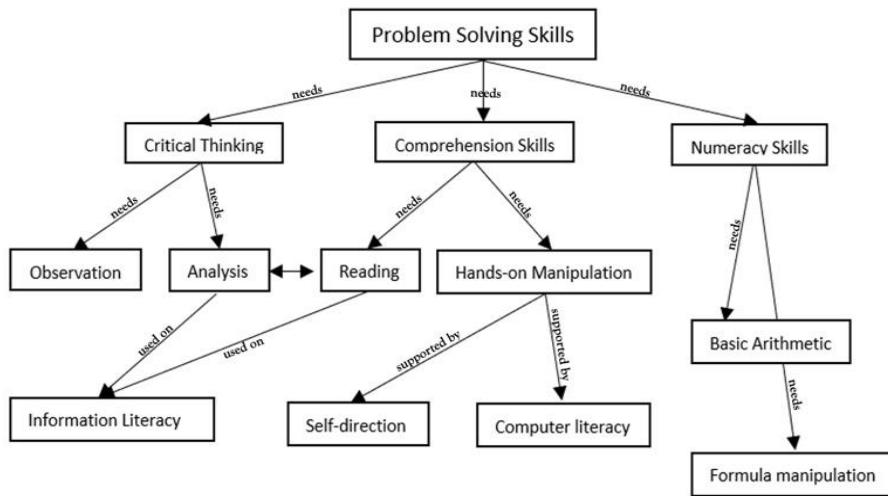


Figure 1: Necessary skills to be developed.

4.3 Challenges encountered in teaching physics

The challenges met by the respondents can be summarized into four (4) broad categories. These are literacy, numeracy, facilities, and real-life application. This is reflected in the figure below.

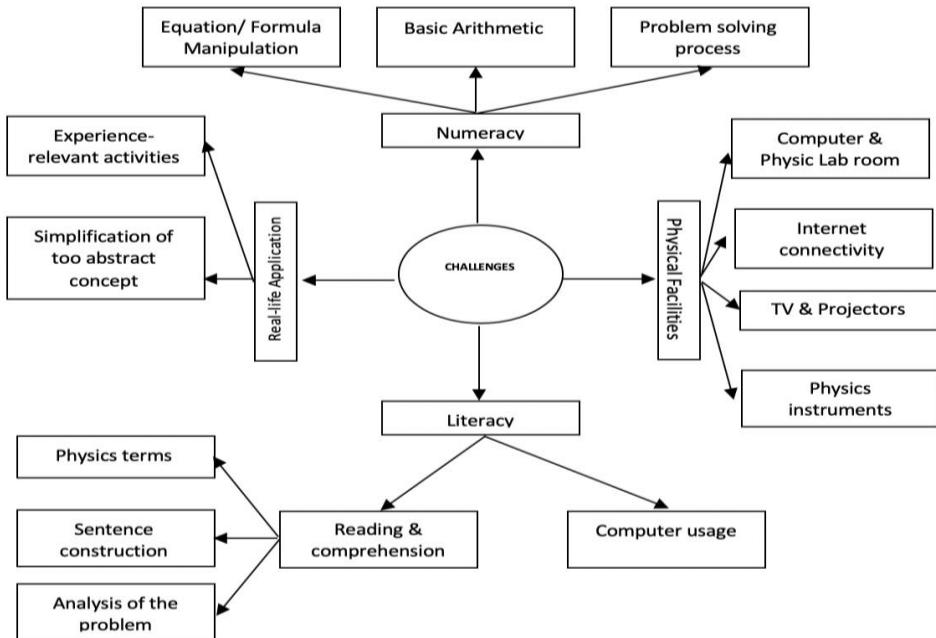


Figure 2: Challenges met in Physics instruction.

All of the respondents experience the challenge of unmastered numeracy skills. The numeracy challenge covers basic arithmetic, manipulation of formulas or equations, and the standard process of solution generation. One extreme example is reported for a Grade 12 student who cannot perform basic division [ISTI7]. It is also documented that students cannot add simple fractions even in Grade 10 [ISTI5]. Although a

generalization should not be made, most of these cases are isolated to hinterland schools. Urban school communities experience the problem but relatively mild compared to the hinterland school community. This means that this problem persists for Grade 7, but as grade level progresses, it becomes less and less of a problem. On the justification of hinterland school communities, a possible reason for very low numeracy is cited by one respondent [ISTI3] who said that her students' priority is on farming and providing for their basic needs. Hence, education is regarded as a less priority.

On equation and formula manipulation, it is reported that students find it challenging to manipulate the arrangement of variables in an equation to get the desired arrangement depending on what is asked in a problem. It is also related to a documented case, where students know the equations to be utilized but are clueless on how to proceed or where to start. Even identifying variables such as initial pressure and final volume is still a challenge for some high school students. Consequently, the process of solution generation in arriving at an answer is a challenge for the learners.

Table 5: Sample of participants translated responses on the theme of numeracy

Participant	Response
ISTI 2	<p>“In grade 10, problem solving is already introduced along with performance tasks. So how will they be able to manipulate or perform in problem solving when they are not able to master the basic on mathematics skills.</p>
ISTI 5	<p>“...when I consider the Math skills, when you are on the lesson on fractions, they don't really know. If you said $\frac{1}{2} + \frac{1}{2}$, they really get confused (Grade 7) ”.</p>
	<p>“...for example, power = work/time. Work is equal to force multiplied by distance times cosine theta. They will be confused how to manipulate the equation (to get the desired variable) ”.</p>

In literacy, it is divided into two: reading comprehension and computer literacy. Although it is reported to be very few in a classroom population, students who cannot read are present in every sampled school community. As reflected by a Philippine-classroom context study, “students exhibit struggle in understanding the concepts of science as well as exercising the skills needed to be a proficient reader” (Imam et.al., 2014). The respondents report that the reading comprehension challenge’s nature is on understanding the sentence and the technical terms involved in physics. Consequently, teachers allocate extra time, which could have been used for other purposes, just to refine and simplify their way of delivering questions, simplify the instruction, and even to the point of vernacular translation.

Surprisingly, it is reported that when a vernacular translation is used, the students can arrive at the solution. This means that the problem is really comprehending the word problem in the English language and not the word problem itself, as is claimed by [ISTI7, ISTI6, ISTI2]. Problem-solving of Filipino-English bilingual students suggested that the difficulties that the students experienced in understanding arithmetic word problems are possibly magnified for students who have to solve the word problem written in their second language (Bernardo, 2002). This leads to the teachers to simplify the problem whenever possible and avoid the use of unfamiliar terms. Also, visualization of the problems or concept through sketches is a useful tool to understand better. This is also done to avoid misconceptions generated through an individual's own imagination of the concept.

Computer illiteracy is also reported for the majority of the respondents. Even the operation of turning on a computer and basic encoding is already a challenge for many

students. This is supported by the data gathered by South East Asian Ministers of Education Organization- Innovation and Technology (SEAMEO INNOTECH) Philippines in 2001 where among the 45, 811 schools, only 14.28% or 5, 217 schools have computers, 18.24 % of the schools have proficient staff in terms of computer use and a minute 13.13% have schools heads with ICT training in the last five (5) years (Bonifacio, 2013). These challenges faced by the teacher can be attributed to the lack of computers at home, and their use in school is deprived due to the absence of computer labs, or if there is, it is allocated for the use of a specialized strand or subject. However, it is reported that even in the hinterland school community that uses solar panels as an energy source, the wide use of android phones. The respondent estimates that 80% of his class has a mobile phone supported by the android operating system.

Table 6: Sample of participants translated responses on the theme of literacy

Participant	Response
ISTI 2	“...those who were unable to read are also unable to comprehend”.
ISTI 5	“The students must know how to use software such as MS Word, PowerPoint, excel since these are very useful in conducting research”.
ISTI 6	“There are some students who will usually say that the English language is the problem and not the physics problem”.
ISTI 7	“PHILIRI, that is the test to determine whether a student belongs to a category of non-readers, frustrated, etc. So based on the results, we really have non-readers”.
	“So, how will they answer if they don’t understand it (word problem), so what I did it I give them an idea, I let them imagine the problem and I illustrate it and I use vernacular word for them to understand, to my amazement they are able to get it. Then I said, “If they can just understand the problem, they can surely provide a solution”.

Facilities in schools is one of the highlighted problems by the respondents. This includes the insufficiency of physics laboratory instruments, physics laboratory rooms, computer laboratory, computer and internet access, T.V. and projector. Insufficiency of physics laboratory instrument is the primary concern of the respondents. They reported an insufficiency of available resources that they can use in teaching specific concepts in Physics. A similar observation in a Philippine classroom is documented.

“The lack of advanced laboratory materials and equipment also exacerbate the poor condition of teaching-learning process and the insufficient resources of a teaching tool, techniques, and strategies in science aggravate the difficulty to achieve the desired skills and competencies”. (Linog et.al., 2013, p.47)

Moreover, the lack of hands-on approach deprives the students of collaboration, which may facilitate peer-learning (Scheckler, 2003). As a resolution, they resort to the use of simulation and videos instead. It is clear from their manner of answering that they prefer the actual tangible physics instrument over the "sensually-limited" simulations and video. This is reflected in their view of a successful Physics classroom as highly facilitative of hands-on learning. The use of simulation and video is also far from ideal because of the lack of computers to cater to individual students. Although Dep-Ed has

provided tablets in the two hinterland schools where our teacher respondents are currently teaching, it is not readily available for the former school; the latter school has an issue of 9 tablets allocated for 23 students. As a result, very few of the students can readily participate in the actual manipulation of the simulation. Moreover, a worst-case scenario was reported where the teacher [ISTI3] just showed a video or simulation on her laptop towards 37 students. According to her, that set-up was not ideal for students, but it is the best they can do with the state of their resources.

Table 7: Sample of participants translated responses on the theme of physical facilities

Participant	Response
ISTI 2	“I don’t usually do experiments because if I really pursue doing experiments, the instruments that is present in our laboratory can only cater the topic on measurements”.
ISTI 3	“...it is really ideal if they can really manipulate tangible objects... like laboratory experiments on a certain topic. They are able to use and apply it and usually the students learn better when they have something to touch ”.
	“It is preferable if there are videos. The problem that we have is we don’t have projectors and televisions. If you want to play video, it is pitiable that you have to do it on your laptop for my maximum class number of 37. So how will learning be successful if in a set of classroom, you have a very small screen and many viewers?”.
ISTI 8	“You can’t use any laboratory experiment to supplement the concept”.

The final challenge cited is on real-life application. The respondents find it challenging to create an activity relatable for the students who have experienced it first hand. They also noted that some aspect of the concept is too abstract and contains too much idealization or assumption which is not the case in an actual situation. Laboratory experiment utilization is a viable suggestion for practice (McDermott, 2001). However, lack of instruments is a problem that is currently experienced in almost every interviewed respondent. One teacher's [ISTI1] initiative in letting them experience projectile motion in the real-life application allows her students to play volleyball. She noted that it is a very crude experience compared to the theoretical aspect of projectile, where one can easily manipulate the projection angle. In real life, that is simply too complex to do. In terms of too complicated and too abstract Physics concepts, they reported having the most significant challenge in simplifying the activity and crafting it so that students have an experiential grasp of the concept presented in an activity.

Table 8: Sample of participants translated responses on the theme of real-life application

Participant	Response
ISTI 1	“I’m having a hard time dealing with giving activities that should relate to their daily lives”.
ISTI 2	“...like not only the concept but the students must be able to translate it into reality where they can do something tangible...”
ISTI 3	“...there are topics that are very difficult to find something that is near to it in tangible objects and it is very hard to teach is since it is too abstract ”.

5. Conclusion

The study results reveal that the challenges faced by Physics teachers can be broadly categorized into literacy, numeracy, physical facilities, and real-life application. Among others, the availability of instruments in teaching Physics is one of the most stressed defining attributes of a successful Physics classroom. However, it is also where the teachers find most challenging to acquire in their school localities. Classroom instruction in Physics is significantly deterred and affected because of this persisting problem in public schools. In addition, literacy and numeracy challenges and the lack of physical facilities further amplify the current dilemma. If unaddressed, it will continue to impact the quality of science education in the country negatively. It is also important to point out that the ideal classroom that the teachers defined is also the same thing that they find challenging in their practice given the current state of educational support from the government. In technological resources, laboratory materials, learning spaces, and teaching aids, a supported curriculum is a determining factor in impeding instruction's successful delivery. The study's result also showed that the skills deemed necessary by the teachers in a science classroom are the same set of skills that they are having difficulty developing. This is interesting because it reveals that the teachers in their classroom instruction are deeply aware of the set of skills needed by their students, such as critical thinking, numeracy, and comprehension, yet have a hard time developing these skills. Future quantitative studies are suggested to look for correlation, if there is, between the level of supported curriculum and these skills' achievement. Also, cross-analysis on how these cited challenges mediate the result of skill acquisition is promising for research exploration.

Suppose the Philippines basic education sector envisions the improvement of science literacy. Focused attention must be addressed to the teachers' challenges, such as literacy and numeracy problems of high school students, which should have been developed in early elementary education. Government support on providing laboratory equipment in every classroom should be of prime importance since this is one of the hallmarks of a successful physics classroom as defined by the teachers. Relevant training and ongoing professional development should also be implemented to allow teachers to apply promising innovative pedagogy such as STEM education that is timely and relevant. Consideration should be in mind such that they are provided support and training towards developing those necessary skills that they find challenging to develop in their students.

References

Balagtas, M., Garcia, D. & Ngo, D. (2019). Looking through Philippine's K to 12 curriculum in mathematics and science vis-à-vis TIMSS 2015 assessment framework. *EURASIA Journal of Mathematics, Science and Technology Education*, 15/12.

Bernardo, A. (2002). Language and mathematical problem solving among bilinguals. *The Journal of Psychology*, 136/3, 283-297.

Bonifacio, A. (2013). Developing information, communication, technology (ICT) curriculum standards for K-12 schools in the Philippines. *Paper presented at the The Sixth Conference of MIT's Learning International Networks Consortium (LINC), MIT, Cambridge, Massachusetts, USA*.

Department of Education. (2016). The K to 12 curriculum and its support system. Retrieved from <https://www.deped.gov.ph/wp-content/uploads/2018/07/J.Andaya-Education-Summit.pdf>

Department of Education. (2019). 2019 DepEd Teacher Induction Program. Retrieved from <https://www.teacherph.com/teacher-induction-program/>

Department of Education. (2016). K to 12 curriculum guide science (Grade 3 to Grade 10). Retrieved from https://www.deped.gov.ph/wp-content/uploads/2019/01/Science-CG_with-tagged-sci-equipment_revised.pdf

Faour, M. & Ayoubi, Z. (2018). The effect of using virtual laboratory on grade 10 students' conceptual understanding and their attitude towards Physics. *Journal of Education in Science, Environment and Health*, 4/1, 54-68.

Gall, M.D., Gall, J.P., & Borg, W.R. Educational research: An introduction (8th ed.). Boston: Pearson.

Garcia, L. (2015). Environmental science issues for higher-order thinking skills (HOTS) development: a case study in the Philippines. *Biology Education and Research in a Changing Planet*. Singapore: Springer Science + Business Media

Garrett, L. (1997). Dewey, Dale, and Bruner: educational philosophy, experiential learning, and library school cataloging instruction. *Journal of Education for Library and Information Science*, 38/2.

Glatthorn, A., Boschee, F., Whitehead, F., & Boschee, B. (2016). Curriculum leadership-strategies for development and implementation. Sage Publications. United States of America.

Gödek, Y. (2004). The development of science education in developing countries. *Gazi University Journal of Kırşehir Education Faculty*, 5/1, 1-9.

Hazelkorn, E. & Ryan, C. (2015). Science education for responsible citizenship. *Report to the European Commission of the Expert Group on Science Education*.

Ince, E., Gunes, Z., Yaman, Y., Kirbaslar, F., & Yolcu, E. (2015). The effectiveness of the IUVIRLAB on undergraduate students' understanding of some physics concepts. *Procedia- Social and Behavioral Sciences* 95, 1785-1792.

Imam, O., Mastura, M., Jamil, H. & Ismael, Z. (2013). Reading comprehension skills and performance in science among high school students in the Philippines. *Asia Pacific Journal of Educators and Education*. 29, 81-94.

Linog, B., Lahoylahoy, M., & Alguno, A. (2013). PHET-simulation-aided lessons and demonstrations: approach to enrich students' understanding on the least learned competency in Physics education. *International Journal of the Computer, the Internet and Management*, 21/2, 46-50.

Lai, E. (2011). Critical thinking: a literature review research report. London: Parsons Publishing

Marquez, L. (2014). Critical thinking in the Philippines education: what we have and what we need. *Journal for Critical Education Policy Studies*. 15, 272-303.

McDermott, C. (2001). On Oersted Medal Lecture 2001: Physics education research- the key to student learning. *American Journal of Physics*, 69/2, 129-136.

Onyesolu, O. (2009). Virtual reality laboratories: an ideal solution to the problems facing laboratory set-up and management. In *Proceedings of the World Congress on Engineering and Computer Science 2009 (WCECS 2009)*. San Francisco, USA.

Orleans, A. (2007). The condition of secondary school physics education in the Philippines: recent developments and remaining challenges for substantive improvements. *Australian Educational Researcher*, 34/1, 33-54.

Osborn, J. & Dillon, J. (2008). Science education in Europe: critical reflections. *A report to the Nuffield Foundation, U.K.*

Ramos, J. (2018). Critical thinking skills among senior high school students and its effect in their academic performance, *International Journal of Social Sciences & Humanities*, 3/1, 60-72.

Scheckler, K. (2003). Virtual labs: a substitute for traditional labs? *International Journal of Developmental Biology*. 47, 231-236.

Steinberg, R. (2000). Computers in teaching science: to simulate or not to simulate?. *American Journal of Physics*. 68, 37-41.

Tesfaye, C. & White, S. (2007). Challenges high school teachers face. *American Institute of Physics Conference Proceedings*.

TIMSS 2019 Encyclopedia. (2019). TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College. Retrieved from <https://timssandpirls.bc.edu/timss2019/encyclopedia/phillippines.html>

APPENDIX 1

Guide Question employed during the semi-structured interviews.

1. How will you describe a successful Physics classroom.
2. Considering global trends and technological advancements, what are the skills that are important for students to be developed inside a Physics class? Why?
3. As an educator, in what way can you provide an avenue for the development of necessary skills?
4. What were the challenges that you have met in teaching Physics?
5. What are your strategies or interventions that you have done to address those challenges?