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Abstract

This study investigates the application of big data and artificial intelligence (Al) to support the
formulation of evidence-based public health policy recommendations, with an emphasis on mitigating
lung cancer risks linked to PM2.5 air pollution. Using 15,000 social media images, an Al model was trained
via a convolutional neural network using Google’s Teachable Machine. The model achieved high
performance with an accuracy of 100 percent and test accuracy of 99.5 percent, and low prediction
error with loss of 0.01 percent and test loss of 1.67 percent. Key factors influencing policy
implementation include policy resources, organizational capacity, and teamwork. The resulting Al model

was deployed as a web application using the Python Flask framework, enabling real-time lung cancer
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diagnosis and rapid treatment responses. The study’s contributions include the design of a policy
framework for the National Health Environment Data Center (NHEDC), the development of an Al-driven
platform for real-time risk prediction, and the integration of proactive public health surveillance policy

in high-risk PM2.5 areas.
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Introduction

Thailand’s 20-year national strategic plan for public health (2017-2036) provides a long-term
roadmap for systemic health reform with the overarching goals of promoting better population health,
ensuring healthcare worker well-being, and achieving a sustainable health system. This strategic
framework is explicitly aligned with the Thailand 4.0 policy, the 12th national economic and social
development plan, and the United Nations Sustainable Development Goals (SDGs). The strategy
addresses critical challenges such as population aging, the rising burden of non-communicable diseases
(NCDs), environmental pollution, and the rapid evolution of digital technology (Strategy and Planning
Division, 2018). From a top-down policy perspective, the Ministry of Public Health (MOPH) drives national
strategic direction through four key pillars: promotion, prevention and protection excellence, service
excellence, people excellence, and governance excellence. Within this structure, particular emphasis is
placed on governance and the development of health informatics and innovation systems. These form
a foundation for incorporating artificial intelligence (Al) into clinical decision-making, especially in
diagnosing conditions linked to air pollution, such as lung cancer. Environmental strategies like the
“green & clean hospitals” initiative also support Al-driven approaches by integrating health and
environmental data to enhance system-level decision-making (Strategy and Planning Division, 2018).
Simultaneously, a bottom-up implementation model empowers local engagement through structures
such as district health boards (DHBs) and primary care clusters (PCCs). These community-level platforms
enable context-specific deployment of Al, including tools for analyzing lung cancer trends in high-risk
PM2.5 areas, integrating radiographic images with local air quality datasets, and training local health
workers in Al-assisted screening techniques. Such grassroots engagement reflects a decentralized
innovation ecosystem that aligns with global recommendations for digital health integration in low and
middle income countries (Hsu, Verma, Mauri, Nourbakhsh, & Bozzon, 2022; World Health Organization,

2021b).

Integrating Al into public health policy to mitigate PM2.5 pollution and associated lung cancer
risk thus requires a synergistic approach combining centralized policy direction, resource allocation, and
infrastructure investment (top-down) with localized implementation, data generation, and capacity
building (bottom-up). This dual-level model not only reflects the core principles of the 20-year strategy
but also supports global best practices in precision public health and environmental epidemiology
(Adefemi, Ukpoju, Adekoya, Abatan, & Adegbite, 2023; Topol, 2019). The advancement of public health

policy aimed at mitigating and reducing the impacts of PM 2.5 necessitates the utilization of effective
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technological tools, particularly artificial intelligence, which is capable of processing big data to support
efficient policy planning, analysis, and monitoring processes (Meskd, Hetényi, & GyOrffy, 2018; Reddy,
Fox, & Purohit, 2019). Al technology has garnered significant attention in the medical field, especially in
accurate disease diagnosis. One of the most critical diseases in which Al plays a vital supporting role is
lung cancer, a leading cause of death globally (Ardila et al., 2019; Lynch et al., 2018). Consequently,
healthcare policy must integrate Al technology into public health service systems to enable timely and

accurate diagnosis and treatment.

Thailand is currently facing a severe air pollution crisis, particularly regarding fine particulate
matter (PM2.5), which has had significant adverse health effects across multiple regions, especially
among vulnerable populations such as children, the elderly, and individuals with chronic respiratory
diseases (Rujirawat, 2024). Although government agencies have implemented surveillance and public
warning measures regarding particulate levels, there remains a lack of proactive policy frameworks and
diagnostic systems capable of assessing health impacts at the individual level with clarity. In contrast,
Al technology, particularly the application of deep learning to chest radiographic imaging, has
demonstrated the ability to enhance the accuracy and speed of lung cancer diagnoses associated with
long-term exposure to airborne particulates (Javed et al., 2024; Setio et al.,, 2017). Therefore, it is
imperative that the state adopts big data and Al technology as strategic tools to support health policy

proposals aimed at the effective prevention and treatment of diseases linked to PM2.5 exposure.

According to statistics on lung cancer patients in Thailand, lung cancer ranks as the second most
common type after liver and bile duct cancer, with 17,222 new cases reported, averaging 48 new patients
per day and 40 deaths per day. The primary causes include prolonged exposure to pollution and PM2.5
particles, smoking or e-cigarette use, secondhand smoke, occupational exposure to carcinogens, and
genetic predisposition (Department of Medical Services, 2024). This public health issue has prompted
the government to allocate policy resources, enhance organizational capacity, and promote teamwork
to support the prevention, control, and treatment of cancer (Chantarasorn, 2005). Traditionally, cancer
diagnosis relies on X-ray imaging for interpretation; however, artificial intelligence technology is now
being used to assist in interpreting patients’ X-ray films to improve the speed and accuracy of diagnosis
(Bangkok Cancer Hospital, 2018; Ruangsapdech, 2022). Consequently, the application of technology and
innovation in both public and private sectors aims to advance the country's development under the

Thailand 4.0 initiative. This strategic direction seeks to drive public policy forward and foster national
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prosperity, security, and sustainability (Kanluem, Jantharote, Worasiriwatthananon, Janthachot, &

Bodeerat, 2023).

Currently, Thailand has adopted policies to expand healthcare services at both the primary level,
which focuses on basic treatment and general health promotion, and the tertiary level, which provides
treatment for complex diseases using advanced medical technology. However, cancer care services
remain fragmented, particularly in the application of artificial intelligence technology for effective
diagnosis. As a result, lung cancer screening continues to face limitations, especially in remote areas
where there is a shortage of radiologists, leading to delayed diagnoses and high medical costs. Integrating
Al to assist in the analysis of medical imaging offers a promising approach to enhance diagnostic speed
and accuracy, alleviate the workload of healthcare personnel, and reduce long-term costs for patients.
Moreover, it represents a policy alternative with strong potential to improve the efficiency and
sustainability of the healthcare system in the long term (Munpolsri, Sarakarn, & Munpolsri, 2021; Srikam

& Joralee, 2025).

Within the context of proactive policy and the challenges faced by medical personnel in patient
care during the digital era, this study identifies three critical factors that contribute to the successful
adoption of innovations such as artificial intelligence in the diagnosis of lung cancer. The first factor is
policy-related resources, which include access to appropriate technology, sufficient funding, and
supportive infrastructure for the effective utilization of Al, as well as the presence of personnel with
technological expertise (Jain, Bhardwaj, Saxena, & Elumalai, 2020). The second factor is organizational
capacity, referring to an organization’s ability to manage, transition, and adapt to digital technology.
Organizations with an innovation-oriented culture and openness to adopting new technology are more
likely to achieve success (Koschmann, Myers, Feltovich, & Barrows, 1994; Martinez-Cerda, Torrent-Sellens,
Martinez-Cerda, Torrent-Sellens, & Gonzalez-Gonzalez, 2018). The final factor is teamwork.
The integration of expertise from various fields such as medicine, software engineering, and data science
plays a crucial role in enhancing the capacity of Al in disease diagnosis. Effective collaboration within
teams is a key variable driving the practical application of such technology (Barak, Maymon, Harel, &
Education, 1999; Soboleva & Karavaev, 2020). Therefore, the synergy of appropriate resources, strong
organizational capacity, and effective teamwork supported by both public and private sectors serves as
a fundamental mechanism in advancing Al policy implementation for accurate and sustainable cancer

diagnosis (Pawar, Kharat, Pardeshi, & Pathak, 2020; Rahane, Dalvi, Magar, Kalane, & Jondhale, 2018).
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However, despite existing studies highlighting the benefits of driving public health policy through
artificial intelligence technology, certain research gaps remain. First, human resource development in
the Al era, particularly in relation to the development of Al technology for cancer diagnosis, has
overlooked the importance of upskilling medical personnel who are required to utilize emerging
technology. There is a lack of research on how physicians, nurses, and public health officers should be
trained to acquire the necessary skills to effectively adopt Al in diagnostic processes and adapt to long-
term changes in their work practices (Vrontis et al., 2023). Second, the integration of Al technology with
public policy implementation in health systems has not yet been examined in depth, particularly in
terms of leveraging Al to modernize and promote equity in healthcare systems. This research gap must
be addressed through studies that link Al technology with effective public health policymaking, in order
to ensure that policy development becomes more explicit, actionable, and applicable within

governmental organizations (Ghanem, Moraleja, Gravesande, & Rooney, 2025; Ramezani et al., 2023).

This study is expected to yield findings on policy system design for establishing the National
Health Environment Data Center (NHEDQC), the development of public policy, and the advancement of
an artificial intelligence platform for real-time prediction of lung cancer risks. Additionally, it aims to
formulate an integrated policy for proactive health surveillance in areas at risk from PM2.5 dust pollution.
Therefore, this research focuses on examining the processes of applying big data in the development of
evidence-based public health policy, along with the use of artificial intelligence to support the practical
implementation of such policy, which currently represents a significant gap in public policy. This research
will lead to policy recommendations for integrating Al technology into health surveillance efforts aimed
at mitigating lung cancer risks associated with PM2.5 exposure. These findings will serve as a foundation
for proactive measures and support decision-making by policymakers at both local and national levels,
in alignment with the concept of “smart health policy,” which emphasizes evidence-based decision-
making (Evidence-Based Policy) alongside good governance in technology management (Tantivess,
Yothasamut, & Saengsri, 2019; World Health Organization, 2021a), with the ultimate goal of promoting
health equity and sustainability for the Thai population in the future.

Research Objectives

1. To examine the process of applying big data in the development of effective and evidence-

based public health policy.
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2. To develop and apply artificial intelligence to support the practical implementation of public
health policy.
3. To formulate policy recommendations for integrating Al technology in monitoring public health

risks related to lung cancer caused by PM2.5.

Scope of Research

This policy proposal aims to advance public health policy by leveraging artificial intelligence
technology to mitigate the PM2.5 particulate matter issue. The case study focuses on the application of
Al in diagnosing lung cancer, using artificial intelligence to drive public policy. The study will collect data
from the social data platform kaggle.com, which is an open-access repository where Al developers share
code and utilize big data to train and test machine and deep learning models. The dataset used in this
study consists of 15,000 photomicrographic images of lung tissues, categorized into three groups:
5,000 images of lung adenocarcinomas (lung aca), 5,000 images of benign lung tissues (lung bnt), and
5,000 images of lung squamous cell carcinomas (lung scc). These images will be used to train the Al

model using convolutional neural network (CNN) architecture.

Research Limitations

The use of research data to drive public health policy through artificial intelligence technology,
utilizing social media databases that gather images of lung cancer patients from around the world,
presents some limitations. Most of the data comprises images of international patients and does not
directly include lung cancer images from Thai patients. Therefore, this model serves as a case study and

cannot yet be applied directly to Thai patients.

However, if direct data on lung cancer patients from Thailand were used to train the Al, and the
model achieved high accuracy, it could then be applied for diagnosing lung cancer in Thai patients.
Nevertheless, this would require the model to be used in conjunction with expert radiologists
interpreting photomicrographic images of lung cancer patients in several cases, until it is confirmed that

the model has negligible or no errors. Only then could it be used independently.

Although the Al model is not yet ready for practical use, this research represents an
interdisciplinary paradigm shift among public administration, Al technology, and digital technology.

It offers a policy proposal for driving public health policy using artificial intelligence and enhances public
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administration research by developing tangible innovations. Furthermore, it supports the transformation

of public sector organizations into digital entities in the era of technological disruption.

Expected Benefits

First, support for the development of policy proposals aimed at advancing the public health
system through the integration of artificial intelligence technology is essential to enhance the efficiency
and accuracy of lung cancer diagnosis, particularly in relation to PM2.5 exposure. The application of Al
in the analysis of photomicrographic images enables medical professionals to detect lung cancer at
earlier stages with greater precision, facilitating faster diagnoses and more timely treatments. This, in
turn, contributes to reduced mortality rates and fosters proactive health surveillance strategies to

mitigate the risks posed by air pollution.

Second, establishing a solid academic foundation for policy proposals is crucial for advancing
public health management at the organizational level through Al technology. The findings of this study
will provide valuable insights to medical professionals and healthcare administrators on how Al can be
effectively integrated into service delivery systems. Such integration is expected to support continuous
improvements within healthcare organizations and promote evidence-based decision-making, ultimately

enhancing the quality of healthcare services provided to the public.

Third, policy recommendations aimed at reducing the workload of healthcare personnel using
Al in managing health risks associated with PM2.5 are essential for improving efficiency in healthcare
settings. Al can perform diagnostic tasks with a level of precision comparable to that of expert
radiologists, thereby alleviating the burden on medical staff, especially in regions experiencing shortages
of healthcare professionals. This can contribute to more equitable access to quality healthcare services,

particularly in underserved or rural areas.

Finally, this research advocates for the promotion of an integrated paradigm that aligns public
administration with emerging technology through Al-driven policy proposals focused on preventive
public health. It is anticipated that the research will contribute to the establishment of a new framework
for incorporating Al technology into public administration practices. This will lay the foundation for
developing preventive public health policy that leverages Al as a strategic tool for monitoring, assessing,

and managing health risks associated with air pollution at both local and national levels.
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Literature Review

Policy Resources

Policy resources represent a crucial component within the inter-organizational model, which
functions as a systemic mechanism pivotal to the effective implementation of public policy. Among
these resources, artificial intelligence plays an increasingly vital role in enhancing the efficiency and
responsiveness of public services across all sectors. Al serves not only as a tool for improving service
delivery to the public but also as a strategic driver for key policy domains, including budget allocation,
human resource development, and the deployment of technological infrastructure that supports
effective policy development (Chantarasorn, 2005). Reddy et al. (2019) emphasized that Al-driven
healthcare delivery systems can be categorized into four main functions: patient management, clinical
decision support, patient monitoring, and healthcare interventions. Their study underscores the
importance of Al in streamlining care processes and enhancing the accuracy of medical decisions. In the
context of cancer care, Sila (2023) explored the use of digital technology in managing chemotherapy
patients, highlighting how telemedicine and mobile health devices help in the continuous monitoring
of side effects, thereby reducing hospital congestion and minimizing the risk of infectious disease
transmission. These digital interventions have also been shown to reduce the frequency of hospital visits,
contributing to both patient well-being and system-wide resource optimization. Moreover, Dank, Salwen,
and Iticovici (2021) investigated the advances of Al in lung cancer diagnostics, noting that the integration
of deep learning algorithms with radiological imaging systems significantly improves diagnostic accuracy,

reduces the workload of medical personnel, and enhances the cost-effectiveness of cancer care.

Al plays a pivotal role in mobilizing resources for health policy development. Fei et al. (2017)
reviewed applications of Al in healthcare and reported its strong potential in optimizing diagnostic
procedures, predicting patient outcomes, and reducing operational inefficiencies. Similarly, Kelly,
Karthikesalingam, Suleyman, Corrado, and King (2019) found that integrating Al into clinical pathways
contributes to improved resource allocation, enhanced staff performance, and more informed policy
design. A study by Obermeyer and Emanuel (2016) highlighted the importance of addressing bias in
Al-driven healthcare systems to ensure the equitable distribution of health resources. In addition, Amann,
Blasimme, Vayena, Frey, and Madai (2020) emphasized the critical role of explainable Al in fostering trust
and accountability, particularly when deploying Al-based diagnostic tools within public health system:s.

Collectively, these findings indicate that when leveraged appropriately, Al technology can transform
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policy resources to support evidence-based and proactive public health policy, especially in managing

high-risk health conditions such as lung cancer linked to PM2.5 exposure.

Organizational Capacity

Organizational capacity is a fundamental component in organizational theory, emphasizing the
responsibility of translating policy into actionable strategies and adapting them to align with specific
tasks, as well as planning and managing resources to ensure smooth operations. This includes the
development of digital skills to effectively leverage technology in management processes. Such a model
examines methods to overcome obstacles in policy implementation by adjusting organizational
structures. Additionally, it necessitates planning for the readiness of materials, equipment, budget, and
the expertise of personnel (Sridacha, Chamruspanth, & Piyanantisak, 2024; Khamphui, Khantahate, &
Phetchsudhi, 2021).

In the context of public health policy driven by artificial intelligence, organizational competency
encompasses digital skill development, which is vital for effectively utilizing emerging technology to
enhance management processes. This model focuses on addressing the challenges of policy
implementation by adjusting internal organizational systems, including infrastructure, equipment, budget

allocation, and the professional expertise of personnel (Brynjolfsson & McAfee, 2024).

Furthermore, Chaiyapan (2021) explored the use of digital technology in cardiothoracic patient
care and found that healthcare professionals, especially nurses, are required to engage with advanced
tools such as telecommunication, telemedicine, Al, internet-based systems, wearable devices, robotics,
and drones. Therefore, medical personnel must develop digital competencies that encompass
knowledge, skills, and professional attributes. Institutional support is also essential in promoting the
adoption of such technology to ensure that patient care is efficient, high-quality, and safe (Oyekunle,

Matthew, Preston, & Boohene, 2024; Wahl, Cossy-Gantner, Germann, & Schwalbe, 2018).

Additionally, Chaiyapan (2021) examined the relationship between practitioner competency and
service quality in both public and private organizations and found that clinical competency,
cost-efficiency, and governmental support were crucial to organizational success. The study indicated
that technology acts as a primary factor in enhancing workforce competency and improving service
quality. He et al. (2019) emphasized that Al applications in medicine improve clinical decision-making
and operational efficiency. Similarly, Reddy et al. (2019) argued that Al integration enhances healthcare

delivery through automation and predictive analytics. In addition, Chen et al. (2017) highlighted the role
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of wearable and cloud-integrated technology in developing a more responsive and data-driven
workforce. Integrating Al into public health systems, particularly for monitoring lung cancer risks
associated with PM2.5 exposure, will therefore require a high level of organizational competency to
ensure that the implementation is effective, and evidence based. According to Rajkomar, Dean, and
Kohane (2019), the successful deployment of Al in health contexts depends on structured data systems
and competent personnel capable of interpreting machine learning outputs. Furthermore, Obermeyer
and Emanuel (2016) noted that while Al offers promising capabilities in disease detection, its impact

relies heavily on institutional readiness and workforce digital literacy.

Teamwork

Teamwork, in conjunction with the integration of digital technology, constitutes a critical
element of organizational development, particularly in the context of public health policy innovation.
It enhances engagement and mutual recognition among stakeholders through the utilization of online
platforms and participatory mechanisms, thus contributing to more efficient public service delivery.
Effective leadership and the appropriate exercise of authority help to foster team cohesion and shared
understanding, which are essential for implementing Al-driven public health interventions. In advancing
public policy aimed at mitigating health risks associated with PM2.5 through Al applications in lung cancer
diagnostics, both frontline health workers and the public must adapt to digital systems and develop
positive user experiences. The success of such policy interventions depends largely on inclusive
participation and the direct involvement of practitioners, making the synergy between teamwork and
digital technology indispensable for institutional transformation in the digital age (Maneerat & Tharakorn,

2022).

In addition, Khanthaniyom (2019) observed that the use of collaborative technology in
educational settings positively influences team performance by supporting infrastructure and strategic
implementation, suggesting broader applicability in public health governance. Similarly, Lei (2024) found
that Al-powered image processing significantly enhances the accuracy of early-stage lung cancer
diagnosis, underscoring the potential of Al technology to elevate healthcare delivery. This view is
supported by several international studies: Javed et al. (2024) and Topol (2019) emphasized that
Al, when used collaboratively with clinical teams, augments diagnostic accuracy and patient engagement;
Sharma et al. (2018) highlighted that interdisciplinary Al-supported teams can reduce diagnostic errors
and expedite decision-making in low-resource environments; Esteva et al. (2017) demonstrated

Al's diagnostic capability in dermatology as comparable to expert physicians, signaling its potential for
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broader medical applications; Rajpurkar et al. (2017) reported that Al models outperformed radiologists
in pneumonia detection via chest X-rays, showcasing Al’s value in radiological teamwork; and Mulshine
et al. (2025) found that team-based Al integration in hospitals improved early detection of high-risk lung
cancer and facilitated localized health policy implementation. Collectively, these findings reinforce the
view that digital teamwork, when strategically alisned with Al technology, plays a vital role in shaping
evidence-based, participatory public health policy, particularly in addressing complex environmental

health challenges such as lung cancer arising from PM2.5 exposure.

Convolutional Neural Network (CNN)

The integration of big data for training Al models using convolutional neural network (CNN) has
been widely applied in image recognition, image classification, and object detection. The CNN process
aims to enhance performance through data augmentation techniques and comparative accuracy
evaluations (Bhavnagri, 2019; Sriwiboon, 2021; Promboonruang, Boonrod, Radasai, & Suphaphan, 2023).
In this study, a large dataset comprising 15,000 medical images was utilized, categorized into three
classes: (1) 5,000 images of lung adenocarcinoma (lung_aca), typically originating in the mucus-producing
glands or alveoli; (2) 5,000 images of non-cancerous lung tissue (lung bnt); and (3) 5,000 images of

squamous cell carcinoma of the lung (lung_scc). The distribution of these classes is illustrated in Figure 1.

Feature maps

Convolutions Subsampling Convolutions Subsampling  Fully connected

Figure 1. Convolutional Neural Network (CNN)
Source: Adapted from Bhavnagri (2019).

Conceptual Framework of the Study

This study constructs its conceptual framework based on established theoretical concepts, a
comprehensive review of related literature, and prior research findings. It aims to propose a public policy
framework that leverages artificial intelligence technology to miticate PM 2.5 pollution in the field of

public health. As a case study, the research focuses on the application of Al in the diagnosis of lung
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cancer, which serves as a practical model for policy innovation. Within this framework, the independent
variables comprise key factors influencing policy implementation, including policy resources,
organizational capacity, and teamwork, while the dependent variables represent the outcomes of policy
implementation, specifically the development of policy recommendations and the creation of a web-
based application for lung cancer diagnosis. The overall conceptual framework of the study is presented

in Figure 2 as follows.

Process

Policy Outcomes of Policy

Implementation Input of big data for Implementation

training artificial

 Policy
intelligence using ’ Recommendations

« Policy Resources

«+ Organizational

. convolutional o
Capacity « Web Application for
neural network , ,
« Teamwork (CNN) Lung Cancer Diagnosis

Figure 2. Conceptual Framework of the Study

Research Methodology

Research Design

The study titled “policy recommendations to advance public health policy through artificial
intelligcence technology for mitigating PM2.5 pollution: a case study of ai application in lung cancer
diagnosis” adopts a mixed-methods research design, combining both qualitative and quantitative
approaches. The qualitative component involves the collection and analysis of relevant literature and
previous research from both domestic and international sources. The quantitative component focuses
on the collection of big data from social media databases, which is then analyzed using convolutional
neural network (CNN). This process is aimed at training artificial intelligence to learn and evolve into a

diagnostic Al model for lung cancer.

Sample Used in the Study

The sample used in this study was obtained from the social media-based platform kaggle.com,
which serves as a collaborative community for Al developers to share code and datasets for machine
learning, deep learning and artificial intelligence development. The dataset used pertains to lung cancer

and comprises 15,000 photomicrographic images, categorized into three distinct groups: 5,000 images of
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pulmonary adenocarcinoma (originating from mucous glands or alveolar structures), 5,000 images of

normal (non-cancerous) lung tissue, and 5,000 images of pulmonary squamous cell carcinoma.

Research Instruments

The research employed data collection instruments to gather photomicrographic images from
social media databases. For data analysis, the study utilized Google’s Teachable Machine platform to
train the Al using convolutional neural network (CNN) until a high level of accuracy was achieved.
Subsequently, the trained Al model was developed into a web application using the Python Flask

framework to perform lung cancer diagnosis.

Data Analysis

The study used Google’s Teachable Machine to analyze big data for the purpose of developing
the Al model. The training process involved feeding a total of 15,000 photomicrographic images into
convolutional neural network, categorized into 5000 images of lung adenocarcinomas (lung_aca), 5000
images of benign lung tissues (lung_bnt), and 5000 images of lung squamous cell carcinomas (lung_scc).
After the Al model was trained to a satisfactory level of performance, it was developed into a web
application using the Python Flask framework. This application is intended to support public health

policy implementation in the digital era.

Research Results

The Application of Big Data in the Development of Public Health Policy

This policy proposal aims to promote the systematic integration of artificial intelligence (Al)
technology to enhance public health strategy aimed at mitigating the adverse health effects of fine
particulate matter (PM2.5) pollution. A case study is employed to demonstrate the practical application
of Al in the diagnostic process of lung cancer, utilizing big data as the foundation for developing a highly
accurate and reliable predictive model. The dataset used in this study comprises 15,000
photomicrographic images of lung tissues, which were processed through a deep learning architecture
using convolutional neural network (CNN). The entire dataset of 15,000 images was divided into two
subsets: 85 percent (12,750 images) for training the Al model and 15 percent (2,250 images) for evaluating
the model’s performance. The data were evenly distributed into three diagnostic categories: 5,000
images of lung adenocarcinoma, 5,000 images of normal lung tissue, and 5,000 images of squamous cell

carcinoma.
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Each image category namely, lung adenocarcinoma (lung aca), normal lung tissue (lung bnt),
and squamous cell carcinoma (lung_scc) comprised precisely 5,000 labeled samples. The lung_aca class
represents malignancies originating from mucus-secreting glands or alveolar structures, while lung_scc
comprises neoplastic tissues derived from the bronchial epithelium. The Al model was trained with key
hyperparameters including 50 training epochs, a batch size of 16, and a learning rate set at 0.001. The
training methodology, as illustrated in Figure 3, was designed to optimize both feature extraction and
classification accuracy, ensuring the model's capacity to distinguish between histological subtypes with

high precision.

lung_aca

5000 Image Samples

Training
)
Webcam
Train Model
A d ~
lung_bnt
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o 1% 9 SYE ~ 3 s
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lung_scc

5000 Image Samples

3 b A ]
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Figure 3. The process of training an Al model using big data through a convolutional neural network

architecture

The Al model was trained using a dataset of 15,000 images, of which 85 percent were divided
for model training and 15 percent for testing and performance evaluation. A comprehensive assessment
of the model’s reliability was conducted by evenly distributing the test dataset across the three
diagnostic categories, allocating 750 images to each class, as illustrated in Figure 4. The model achieved
99 percent accuracy in classifying lung aca images and 100% accuracy in classifying both lung_bnt and
lung scc images. Further verification using the confusion matrix, presented in Figure 5, confirmed the
model’s high classification performance. Specifically, the model correctly classified 742 out of 750
lung_aca images, with 8 images misclassified as lung_scc. All normal lung tissue (lung_bnt) images were
classified with perfect accuracy. For the lung scc category, 748 out of 750 images were correctly

identified, with only 2 images misclassified as lung_aca. These overall results demonstrate the model’s
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strong ability to distinguish between malignant and non-malignant lung tissues with high precision,
supporting its potential for application in clinical diagnostics and early-stage cancer screening.

Figures 6 and 7 illustrate the training process of the Al model using big data comprising 15,000
photomicrographic images. Of these, 85 percent (12,750 images) were allocated for training, and the
remaining 15 percent (2,250 images) were reserved for model testing. The model was developed using
convolutional neural network (CNN) architecture, trained over 50 epochs with a batch size of 16. The
learning rate was fixed at 0.001. Based on this training configuration, the Al model achieved a perfect
training accuracy of 100 percent and a high-test accuracy of 99.5 percent on previously unseen data. In
terms of error metrics, the model exhibited a minimal training loss of 0.01 percent and a test loss of
1.67 percent, indicating a low rate of prediction error in both phases. These results highlight the model’s
ability to accurately and reliably predict lung cancer, with strong generalizability across different data
samples. Moreover, the model demonstrated an optimal fit to the data, avoiding both overfittings
characterized by excellent performance on training data but poor generalization and underfitting, which
occurs when a model fails to capture essential patterns due to limitations in training data, network
complexity, or insufficient learning iterations. The successful training and evaluation process culminated
in the creation of the final model file, “keras_ model.h5,” which demonstrates robust and precise

diagnostic capability for lung cancer classification.

An evaluation of the model’s generalizability and robustness was subsequently performed
through a 5-fold cross-validation on the entire dataset of 15,000 photomicrographic images. Each fold
preserved the original class distribution to ensure balanced representation across categories. The
resulting accuracy scores were 0.94, 0.96, 0.94, 0.96, and 0.93, yielding a mean classification accuracy of
94 percent, as presented in Table 1. These cross-validation results demonstrate consistent and reliable
performance across different data partitions, underscoring the model's capacity to generalize effectively
to unseen data. The absence of significant performance variation across folds further supports the

model’s potential for clinical deployment without substantial risk of overfitting.

Accuracy per class

CLASS ACCURACY # SAMPLES
lung_aca 0.99 750
lung_bnt 1.00 750
lung_scc 1.00 750

Figure 4. Classification of lung cancer types, model accuracy, and the sample groups used for testing
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Figure 5. Model evaluation using the confusion matrix

Figure 6. Model accuracy va
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Table 1. Evaluation of model performance using 5-fold cross-validation

Evaluation of model performance Averages
Fold 1 Accuracy 0.94
Fold 2 Accuracy 0.96
Fold 3 Accuracy 0.94
Fold 4 Accuracy 0.96
Fold 5 Accuracy 0.93
Total 0.94

The development and application of Al support the implementation of public health
policy

The artificial intelligence (Al) model utilized for lung cancer diagnosis is directly aligned with
public policy objectives aimed at mitigating the health effects of fine particulate matter (PM2.5), a known
contributor to respiratory diseases and lung cancer, particularly in regions with elevated air pollution. In
this context, Al functions not only as a diagnostic tool but also as a mechanism for proactive health
surveillance and evidence-based decision-making. Its capacity to analyze photomicrographic images with
high speed, precision, and consistency significantly enhances the likelihood of early detection, reduces
the diagnostic workload for physicians, and improves the efficiency of screening at-risk populations in

PM2.5 affected areas.

Although the Al model discussed in this study primarily serves to support clinical diagnostics of
lung cancer, its relevance to public policy concerning PM2.5 lies in its potential role as a downstream
intervention within a broader environmental health surveillance system. PM2.5 exposure has been
epidemiologically linked to increased incidence and mortality of lung cancer, particularly in urban and
industrialized areas. By enabling early detection and classification of PMZ2.5-related pulmonary
malignancies, this Al model aligns with the preventive and diagnostic strategies promoted in public
health policy frameworks addressing air pollution. Thus, while the model does not directly mitigate
PM2.5 pollution, it operationalizes health system responsiveness to its adverse effects, bridging
environmental monitoring and clinical response. In addition, although current applications primarily
emphasize hospital-based use by medical professionals, the proposed research expands the role of Al
beyond the clinical setting to strengthen public health systems at both local and national levels. A key
component of this policy framework is the integration of Al model with the NHEDC. When real-time data

from the pollution control department indicates that PM2.5 concentrations have exceeded safety
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thresholds, the system can automatically trigger the deployment of mobile health units to conduct
screening in affected communities. Radiographic images collected in the field are then analyzed by the
Al model, with diagnostic outcomes recorded and disseminated through the NHEDC dashboard, thereby
enabling data-informed and timely decision-making by policymakers across multiple sectors and

administrative levels.

In terms of cost and implementation, the development of artificial intelligence (Al) models
particularly convolutional neural network (CNN) for medical diagnostics requires considerable resources
in the initial phase. This is especially true for the collection, preprocessing, and annotation of large-scale
medical image datasets, as demonstrated in this study which utilized 15,000 photomicrographic images.
Furthermore, high-performance computing infrastructure is essential during the training phase to ensure
model convergence and accuracy. However, once the model achieves a satisfactory level of diagnostic
precision, its operational deployment becomes economically feasible. Model inference in clinical
settings can be performed using standard GPU-equipped workstations, significantly reducing long-term
computational costs. Integration into existing hospital infrastructures, such as picture archiving and
communication systems (PACS) and hospital information systems (HIS), further enhances its practical
viability. Additionally, the model is compatible with widely used open-source platforms like Keras and
TensorFlow, facilitating flexible implementation across institutions. From a usability perspective, the
system can be designed with user-friendly interfaces and offers a high degree of automation, enabling
frontline healthcare professionals to utilize the model effectively without requiring advanced technical
knowledge. As such, it functions as a cost-effective, scalable, and accessible clinical decision-support

tool that aligns well with digital pathology workflows and public health system requirements.

The artificial intelligence (Al) model proposed in this study is not merely an innovation for
diagnosing lung cancer but also plays a strategic role in developing a data-driven public health
management ecosystem. This model can be linked to the NHEDC, as outlined in the policy
recommendations, serving as a centralized cloud-based platform accessible to medical personnel in all
public hospitals. The platform will enable the utilization of the Al model for diagnostic purposes while
also functioning as a centralized repository for big data on health, air quality, and environmental
conditions from various regions. Moreover, this platform will support diagnostic decision-making and
facilitate the management of big data to advance medical Al development. It will allow healthcare
professionals to efficiently apply the model for lung cancer screening, support real-time disease

surveillance, and foster long-term epidemiological research. The Al model is also designed to be
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applicable within diagnostic workflows in secondary and tertiary healthcare facilities, enabling medical
personnel to analyze radiographic images rapidly and accurately with Al assistance. The resulting data
can be transmitted into an integrated epidemiological surveillance system through a continuous
feedback loop, effectively linking clinical findings, environmental data, and public health policymaking.
In the future, if the model is further developed to achieve higher accuracy and stability, it holds strong
potential for integration into existing government digital platforms such as Paotang, Mor Prom, or
Tangrath as part of the national e-Government framework. This would facilitate broader access to
preventive healthcare services for both healthcare providers and the general population. In summary,
this Al model is not a standalone technology; rather, it is a critical mechanism that bridges clinical data,
environmental monitoring, and public health policy, aiming to establish an efficient and sustainable

healthcare system capable of addressing escalating health risks associated with environmental factors.

Despite these benefits, the integration of Al into government healthcare systems faces several
challenges. These include inadequate technological infrastructure in rural or resource-limited areas,
difficulties in integrating data across multiple agencies, and a general lack of digital literacy among certain
healthcare workers. Nevertheless, Al provides distinct advantages over traditional approaches that rely
solely on human resources, particularly in terms of speed, accuracy, and scalability. Its adoption has the
potential to significantly enhance public health responses, especially in managing persistent

environmental hazards such as PM2.5, which require prompt and effective interventions.

Potential barriers to the implementation of the Al model include concerns regarding data privacy,
the need for standardization of image data formats, and resistance from healthcare practitioners
unfamiliar with Al-assisted diagnostic tools; furthermore, variability in data quality across different
healthcare institutions may present challenges to achieving the generalizability and robustness of the
model at the national level. Despite these obstacles, the Al model offers substantial advantages over
the current standard of care, such as faster diagnostic turnaround times, reduced rates of diagnostic
errors, and enhanced consistency in image interpretation. Moreover, when integrated with
complementary policy instruments, including health surveillance systems and the NHEDC dashboard,
the model significantly improves the capacity of public health authorities to monitor disease trends
associated with environmental exposures, thereby enabling more proactive policymaking and efficient

allocation of healthcare resources.

To support these goals, the Al model was developed as a web-based application designed to
assist medical personnel in diagnosing lung cancer through photomicrographic images. The application
operates via two primary methods. The first method involves predicting lung cancer by uploading a

photomicrographic image into the system. Once the image is obtained, the user selects the "Choose
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File" option and uploads the image. The user then clicks the "Predict" button, prompting the system to
analyze the image and generate a diagnostic result. The outcome is categorized into one of three
classifications: (1) lung_aca, indicating lung adenocarcinoma a cancer originating from mucous-secreting
glands or alveolar tissue in Figure 8; (2) lung bnt, indicating a normal lung condition without signs of
cancer in Figure 9; and (3) lung scc, referring to squamous cell carcinoma, a type of lung cancer that
arises from the epithelial lining of the bronchi in Figure 10. The second method enables the prediction
of lung cancer from photomicrographic images using a webcam. Once the lung tissue sample has been
prepared and its photomicrographic image is available, the image is placed in front of a webcam.
The user then clicks the "Start" button in Figure 11, activating real-time image capture and analysis.
The system processes the image and displays a predictive result. For example, a prediction of lung aca:
1.00 indicates lung adenocarcinoma in Figure 12; lung bnt: 1.00 confirms normal tissue in Figure 13; and
lung_scc: 1.00 indicates squamous cell carcinoma of the bronchial epithelium in Figure 14. This method

provides greater flexibility in both clinical settings and remote health screening scenarios.

Al for Diagnosis of Lung Cancer  Lung Cancer Diagnosis Lung Cancer Diagnosis Using a Webcam

Lung Cancer Diagnosis

Choose File No file chosen

Wtion results were found:

Probabilities : [[110000000e+00
15671915e-12 3.3856600e-271]1

Lung_aca is Lung Adenocarcinoma

Lung_bnt is Lung Benign Tissue

Lung_scc is Lung Squamous Cell
Carcinoma

Figure 8. shows the prediction of lung_aca, indicating lung adenocarcinoma, a type of cancer originating

from the mucous glands or alveoli of the lung

Alfor Diagnasis of Lung Cancer  Lung Cancer Diagnosis Lung Cancer Diagnosis Using a Webcam

Lung Cancer Diagnosis

Choose File No file chosen

wion results were found:

Probabilities : [[1.9955579e-02
9.8004442e-012.9404943e-09]]

Lung_aca is Lung Adenocarcinoma
Lung_bnt is Lung Benign Tissue

Lung_scc is Lung Squamous Cell
Carcinoma

Figure 9. shows the prediction of lung bnt, indicating a normal lung with no signs of lung cancer



76 | Journal of Public Administration, Public Affairs, and Management

Al for Diagnosis of Lung Cancer Lung Cancer Diagnosis Lung Cancer Diagnosis Using a Webcam

Lung Cancer Diagnosis

ChooseFile | No file chosen

wtion results were found:

Probabilities : [[2.9469145e-04
2.8681265e-02 9.7102410e-011]

Lung_aca is Lung Adenocarcinoma
Lung_bnt is Lung Benign Tissue

Lung_scc is Lung Squamous Cell
Carcinoma

Figure 10. shows the prediction of lung scc, indicating squamous cell carcinoma of the bronchial

epithelium

Al for Diagnosis of Lung Cancer Lung Cancer Diagnosis Lung Cancer Diagnosis Using a Webcam

Lung Cancer Diagnosis

Lung_aca is Lung Adenocarcinoma
Lung_bnt is Lung Benign Tissue
Lung_scc is Lung Squamous Cell Carcinoma

Figure 11. shows the diagnosis of lung cancer using a webcam

B4 157 ORAQREIE BF LUAECARGER L CORSST ERAERAT1E LuM CAORGER CRAGNAEH LISIS] 3 Wenesm

Lung Cancer Diagnosis

lung_aca: 100
lung_bnt: 0.00
lung_scc: 0.00

Lung_aca is Lung Adenocarcinema
Lung_bnt is Lung Benign Tissue
Lung_sce is Lung Squamous Cell Carcinoma

Figure 12. lung aca: 1.00 shows a prediction of lung adenocarcinoma with a prediction probability of

100 percent
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i b it o Loy L o Cros gy Lo v Coagiris Ui Wi

Lung Cancer Diagnosis

lung_aca: 0.00
lung_bnt: 100
lung_scc: 000

Lung_ica is Lung Adenccarcinoma
Luing_bevl Is Lung Barign Thasus
Lung _soc b Lung Squamois Cell Cacinomas

Figure 13. shows the prediction lung bnt: 1.00, indicating normal lungs with no lung cancer with a

prediction probability of 100 percent

A o Enageatn of Lumg Cangar  LungCaner Duagronss Ling ancer Easgran Uneng & Wetsam

Lung Cancer Diagnosis

huni_a:n-. 0.00
lung_bnt: 0.00
lung_sce 1.00

Lung_sca i Lung Adenccarcinoma
Lung_bet is Lung Berign Tissue
Lung_sce by Lung Squamows Cell Carcinoma

Figure 14. shows the prediction lung_scc: 1.00, indicating squamous cell carcinoma of the bronchial

epithelium with a prediction probability of 100 percent

This study presents the development of an artificial intelligence (Al) model for the diagnosis of
lung cancer through the analysis of photomicrographic images, with the goal of supporting public health
systems in effectively responding to the health impacts of fine particulate matter (PM2.5). Although the
model remains at the proof-of-concept stage, preliminary results demonstrate promising accuracy and

diagnostic speed. This suggests potential for future development into a clinical decision support system,
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particularly in areas with high levels of PM 2.5 pollution, which have been associated with increased

lung cancer incidence.

The clinical applications of the Al model include assisting pathologists in accelerating
photomicrographic image analysis, reducing workload, and improving diagnostic accuracy. The model
can be deployed via both image upload and real-time analysis using a microscope connected to a
webcam. From a public health systems perspective, when linked with the NHEDC platform, the model
could function as an early warning tool in high-risk areas by proactively prompting lung cancer screening.
At the policy level, the model could serve as a data bridge between real-time environmental data and
health data, enabling sovernments to formulate context-sensitive prevention strategies and allocate

healthcare resources more efficiently.

Regarding the development process, although the model is still at the proof-of-concept stage,
this study outlines a systematic pipeline for its advancement. Data preparation involved the selection
and labeling of histopathological images from publicly available datasets and the application of data
augmentation techniques to enhance training diversity. The model was designed using convolutional
neural network (CNN) architecture implemented with TensorFlow/Keras, optimized for high-resolution
image input. Relevant hyperparameters such as loss function, learning rate, and number of epochs were
carefully configured. Training and validation employed k-fold cross-validation to prevent overfitting and
assess model generalizability, with performance metrics including accuracy and confusion matrix
systematically reported. For prototype deployment, a web-based application was developed to allow
diagnostic testing using either image uploads or webcam-connected microscopes, with the classification

outcomes displayed alongside model confidence scores to support clinical decision-making.

For future improvements, several directions are proposed. First, data quality control should be
enhanced by expanding the dataset to include images from domestic healthcare facilities, thereby
improving contextual accuracy for the Thai population. Second, clinical validation should be conducted
by comparing Al-generated diagnoses with those of physicians under real-world conditions.
Third, integration with national health information systems (HIS) and picture archiving and
communication systems (PACS) is recommended to enable large-scale implementation. Finally, cost-
effectiveness analysis should be undertaken to evaluate the economic and operational efficiency of the

Al model compared to traditional diagnostic approaches.
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Discussion
A study on the application of big data in the development of evidence-based and efficient

public health policy

The successful implementation of public health policy aimed at mitigating PM2.5 pollution
through artificial intelligence technology necessitates several key factors. Firstly, policy resources and
governmental support play a crucial role in delivering quality medical services to the public.
The integration of smart medical technology enhances service accessibility, reduces treatment costs,
and enables efficient disease outbreak predictions. Al technology can analyze medical and public health
data to expedite disease diagnosis. Specifically, employing Al in diagnosing lung cancer reduces
diagnostic time and increases the likelihood of appropriate treatment, thereby standardizing healthcare
services and improving the quality of life equitably. This approach also addresses the shortage of
radiology specialists and facilitates efficient management of medical resources. Phon-eg-phan (2019)
found that the demand for medical devices in Thailand is growing in three areas: disease prevention
tools, home healthcare equipment, and personalized patient technology. The primary driving force
behind these developments is technological advancement, which must align with social needs and the
actual healthcare budget. International studies corroborate these findings. For instance, Ghose, Guo, Li,
and Dang (2021) demonstrated that mobile health platforms significantly improve health behaviors and
reduce medical expenses among chronic disease patients. Linkous, Zohrabi, and Abdelwahed (2019)
highligshted the potential of loT in smart homes for health monitoring, emphasizing the need for
integration with conventional healthcare. Baucas, Spachos, and Gregori (2021) discussed the applications
and challenges of loT devices in healthcare, underscoring their role in alleviating healthcare system
burdens. Kittiamornkul (2019) emphasized the importance of digital technology, including Al and
big data, in transforming Thailand's healthcare system. Furthermore, Leelahavarong et al. (2019)
reviewed the institutionalization of health technology assessment in Thailand, illustrating its contribution

to informed healthcare decision-making.

Secondly, organizational capacity refers to the ability to provide efficient and reliable medical
services, encompassing knowledge, skills, capabilities, equipment, facilities, and adequate budgets to
enable personnel to work effectively. Organizations must be responsible and understand the correct
application of smart medical technology in implementing public health policy, fostering an environment
that promotes the use of such technology. The development and application of smart medical

technology enhances service efficiency and improves patient quality of life. Efficient management of
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medical resources creates opportunities for personnel to learn and develop flexible skills to adapt to
changes in healthcare services, particularly in areas with limited access. Chaiyapan (2021) found that
core competencies of personnel affecting service quality include medical expertise, cost reduction, and
government support, all of which are crucial for Thailand's potential in the global medical industry.
International research supports these insights. For example, Kruachottikul et al. (2024) proposed a
comprehensive MedTech product innovation development framework tailored for university research
commercialization within emerging markets, emphasizing the importance of aligning innovations with
clinical needs and market strategies. Shaik et al. (2023) reviewed Al-enabled remote patient monitoring
systems, highlighting their role in transforming healthcare monitoring applications. Pichetworakoon,
Kooptarnond, and Ngamchuensuwan (2021) analyzed the economic and legal aspects of deploying
medical and healthcare robotics, comparing the European Union, South Africa, and Thailand, and
discussing the potential and challenges of medical robots. Kingkaew and Teerawattananon (2014)
reviewed the development of health technology assessment in Thailand, noting the influence of
economic status and health financing reforms on the demand for HTA information. Mohara et al. (2012)
discussed the use of health technology assessment in informing coverage decisions in Thailand,

emphasizing its role in policy decision-making.

Thirdly, teamwork is essential in developing Al models for lung cancer diagnosis through web
applications, enhancing diagnostic accuracy and timely treatment. This supports national development
in the Thailand 4.0 era. Success stems from collaboration between medical professionals and
technology experts, leading to innovative treatments. Clear division of roles and responsibilities fosters
the development of appropriate systems and technology, promoting organizational adaptation to the
digital era. Data processing and medical application development improve work efficiency and
responsiveness to user needs. Teamwork accelerates problem-solving and the development of suitable
services, reducing unnecessary steps and enabling rapid and widespread access to services, thereby
conserving resources. This aligns with the findings of Wisetsena (2022), who noted that healthcare
innovation in the Thailand 4.0 era can streamline processes, enhance accessibility, and increase user
satisfaction. International studies further substantiate these points. Mahakunajirakul (2022) investigated
factors influencing the adoption of healthcare wearable devices in Thailand, emphasizing the role of
performance expectancy and social influence. Patel et al. (2024) highlighted the role of Al-integrated
remote patient monitoring in refining chronic disease management strategies by offering more
personalized and effective treatments. Nigar (2025) explored the integration of Al in remote patient

monitoring, emphasizing enhancements in monitoring accuracy, predictive analytics, and personalized
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treatment plans. De Filippo et al. (2025) presented the PrediHealth project, which integrates
telemedicine and predictive algorithms for the care and prevention of patients with chronic heart failure,
showcasing the benefits of Al-enhanced remote monitoring in improving patient outcomes and reducing

healthcare costs.

Development and Application of Al in Supporting the Practical Implementation of

Public Health Policy

The application of artificial intelligence in analyzing photomicrographic images has significantly
improved the early detection of lung cancer, particularly in resource-limited settings where radiologists
are scarce. Al tools such as gXR by Qure.ai have demonstrated diagnostic performance comparable to
expert radiologists in identifying thoracic abnormalities (Ardila et al., 2019; AstraZeneca, 2025; Hwang et
al., 2019; Rajpurkar et al., 2017). This innovation not only accelerates diagnosis but also increases the
chances for timely treatment, which is crucial in managing lung cancer risks influenced by PM2.5
exposure. Al also plays a vital role in processing big data to explore the intricate relationships between
PM 2.5 air pollution and lung cancer risks. Studies have shown that machine learning techniques can
accurately predict the health impact of PM2.5 by correlating environmental data with health records,
hospitalization rates, and mortality (Kelly & Fussell, 2015; Lary, Lary, & Sattler, 2015; Xing et al., 2020).

These insights enable policymakers to design proactive health interventions based on empirical evidence.

The development of Explainable Al (XAl) marks a critical advancement in enhancing the
transparency and trustworthiness of Al systems, particularly in clinical settings. XAl allows healthcare
professionals to understand the rationale behind Al-generated recommendations or diagnostic outputs,
thereby facilitating its integration into life-critical decisions (Barredo Arrieta et al.,, 2020; Ghassemi,
Oakden-Rayner, & Beam, 2021; Holzinger, Langs, Denk, Zatloukal, & Muller, 2019; Tjoa & Guan, 2020).
Such models establish a robust foundation for Al adoption in health systems, ensuring both ethical and
practical usability. In terms of public health policy, Al enables data-driven decision-making by predicting
disease risks, assessing PM2.5 impact on communities, and suggesting actionable interventions.
These capabilities support targeted policy responses, enhance risk communication, and promote
community participation in environmental health governance (Hwang et al., 2019; Obermeyer & Emanuel,
2016; Rajkomar et al., 2019; Wong, 2022). Ultimately, Al fosters the integration of scientific evidence into

sustainable and equitable policy design.
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Conclusion

This study highlights the crucial role of artificial intelligence and big data in enhancing evidence-
based public health policy, particularly in addressing the health impacts of PM2.5-related lung cancer
in Thailand. The integration of Al in smart medical technology significantly improves diagnostic accuracy,
especially in resource-limited settings. The application of Al, such as analyzing photomicrographic images,
reduces diagnostic time, facilitates timely treatment, and enables predictive modeling for disease
surveillance. These capabilities support health equity by improving access to healthcare and optimizing

the allocation of medical resources.

Organizational capacity and inter-professional collaboration are essential for the successful
implementation of Al-based public health interventions. Medical institutions must invest in infrastructure,
personnel training, and the ethical application of Al tools. The study confirms that effective teamwork
among healthcare professionals, technology developers, and policymakers enhances innovation, fosters
system adaptability, and improves healthcare service delivery. These efforts are aligned with the goals

of Thailand 4.0 in promoting digital transformation within the health sector.

To advance the practical implementation of Al-driven health policy, the study proposes
comprehensive policy recommendations. These include establishing centralized health and
environmental data systems, developing real-time Al risk analysis platforms, deploying proactive health
surveillance, and integrating Al into diagnostic workflows. Moreover, policy frameworks must address
ethical governance, data security, and citizen rights, while also encouraging public engagement and
capacity-building through education and local partnerships. Collectively, these recommendations aim
to support sustainable, data-informed health governance and strengthen national resilience to air

pollution-related health threats.

Research Contributions

A policy framework has been proposed to drive public health policy aimed at mitigating PM2.5
pollution through the application of artificial intelligence, as illustrated by a case study on Al-based lung
cancer diagnosis. This study yields the following key contributions: First, the design of a policy system
for the establishment of the NHEDC is proposed, and the center is envisioned as a centralized structural
mechanism that integrates health, air quality, and environmental data from government agencies at all

levels. This approach emphasizes the application of information technology and artificial intelligence,
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and it aims to enhance data analysis efficiency while supporting systematic and evidence-based policy

decision-making.

Second, the development of public policy and the advancement of an Al-driven platform for
real-time prediction of lung cancer risk are emphasized, and this includes supporting the creation of Al
platforms that can analyze epidemiological and environmental data to forecast lung cancer risks in real
time. The initiative is grounded in the concepts of strategic public management and anticipatory
governance, and it enables both central and local agencies to utilize analytical results to inform their

decision-making processes more effectively.

Third, the formulation of an integrated policy for proactive health surveillance in PM2.5 risk areas
is advocated, and this involves promoting policy integration among government sectors, academic, and
healthcare service units to implement proactive health screening measures for populations in high-risk
areas. Al systems are employed to process health data in conjunction with air quality data, and this
integration supports both preventive planning and the timely, appropriate allocation of public health

resources.

Policy Recommendations for Al Integration in Public Health Surveillance of PM2.5 Related

Lung Cancer

This study presents nine policy recommendations aimed at guiding the development of a
systematic and integrated framework for the application of artificial intelligence in monitoring and
mitigating public health risks related to PM2.5 induced lung cancer. The first recommendation is the
establishment of the NHEDC, which would serve as a central repository for big data on health, air quality,
and environmental conditions from across the country. This initiative would require collaborative efforts
among the Ministry of Public Health, the Pollution Control Department, and various research institutions.
It also involves the development of a secure national cloud-based big data infrastructure that aggregates
hospital health data nationwide, to be used as training datasets for the development of Al diagnostic
models. Additionally, it includes the nationwide installation of PM2.5 sensors that are connected to

hospital networks.

Second, the development of a real-time Al-based risk analysis platform for lung cancer is essential.

This platform would utilize historical data from hospitals and meteorological departments to create
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machine learning models that predict health risks by location and time, with pilot implementations in

high-risk provinces such as Bangkok and Chiang Mai.

Third, proactive health surveillance measures should be implemented in PM2.5-affected areas by
deploying mobile medical units and photomicrographic images screening services and collecting health

data for Al-driven analysis.

Fourth, Al-assisted medical image analysis should be promoted to enhance diagnostic accuracy
and reduce the workload of medical personnel. This includes training programs for physicians, provision

of Al-enabled software, and integration with electronic medical records (EMR) systems.

Fifth, public health Al governance policy must be established to ensure data security and citizen
rights protection. This includes drafting regulations or laws to govern Al use, defining ethical guidelines

(Al ethics) for medical personnel, and forming algorithm audit and transparency committees.

Sixth, strengthening public-private-academic collaboration is crucial for developing context-
appropriate Al solutions. This can be achieved through joint academic conferences, cross-institutional

research funding, and intersectoral data sharing initiatives.

Seventh, support for provincial-level pilot projects is vital for testing feasibility before national
scale-up. Targeted provinces such as Bangkok, Chiang Mai, and Pathum Thani would serve as prototypes

for Al surveillance and reporting systems, with evaluations to inform broader implementation.

Eighth, local health data analyst networks should be developed to build local capacity.
This includes offering Al and data analytics training in collaboration with local governments and

universities and establishing provincial data centers.

Ninth, public education and communication campaigns are necessary to promote understanding
and engagement with Al in health care. These would include mobile applications for self-assessment
and air quality alerts, local media campaigns, and awareness programs encouraging proactive health
screening. Collectively, these integrated policy proposals aim to strengthen public health resilience,
promote evidence-based policymaking, and leverage Al technology to mitigate the adverse health

impacts of PM2.5 air pollution in Thailand.
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