a v

136 sasileyayrfiTand U7 8 atfu Supplementary Uszanfieusuanan 2559

CUCKOO SEARCH ALGORITHM FOR THE VEHICLE ROUTING PROBLEM
WITH BACKHAULS AND TIME WINDOWS

ANSIAIUIATNITIALTUNIAUT AT VBINARTUTANBINAULAZAITINRIATIAIYITNITAUNN

AIMBUIINNTTLAIULUUNGANITUYDIUNNIIN

Tanawat Worawattawechai' Boonyarit Intiyot’ and Chawalit Jeenanunta®
Y2Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University
*School of Management Technology, Sirindhorn International Institute of Technology (SIIT),

Thammasat University

Abstract

A Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW) involves two
different subsets of customers known as linehauls and backhauls. The demands of the linehauls
must be delivered before the backhaul pickups. The total demands of customers must not exceed
a vehicle’s capacity, and the time that a vehicle arrives at every customer must be within the
required time windows. In this study, we present a cuckoo search (CS) algorithm, which is inspired
from aggressive breeding behavior of cuckoo birds to solve this problem. Moreover, we proposed
the nearest neighbor with roulette wheel selection method (NNRW) as an initial solution algorithm.
The proposed method was tested on a set of benchmark instances. The results indicated that
NNRW gave equal or better solutions than the improved nearest neighbor algorithm (INN).
Furthermore, CS algorithm was compared with other methods from existing studies. Computational
results show that our algorithm gave equivalent solutions to or better solutions than the best
known solutions for the majority of small and medium-size instances. Hence, it is a competitive

method for solving small and medium size VRPBTW problem:s.
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Introduction

Since business has always been a highly
competitive environment, many companies
employ strategies for optimizing their logistics
system. To effectively improve logistic service
quality, several problems have been studied
including vehicle routing problem (VRP). The
objective of VRP is to find an optimal set of
routes for delivery vehicles which minimizes
total cost while being restricted by the capacity
of the vehicles. This problem is widely applied
in many applications such as logistics distribution,
school bus routing, and mailing system. Many
types of vehicle routing problem models have
been developed due to varieties of real-world
situations. One of them is the vehicle routing
problem with time windows (VRPTW), which is
a VRP with a specified time slot that a delivery

is allowed for each customer. A waiting time
occurs if a vehicle arrives before the specified
time window. VRPTW is commonly found in
distribution planning (Wang et al., 2016), material
transportation (Pradhananga et al., 2014), and
E-grocery delivery (Emeg, Catay & Bozkaya,
2016). Berger & Barkaoui (2002) presented
a new memetic algorithm in the serial and
parallel versions to address the VRPTW. Later,
they presented a new parallel hybrid genetic
algorithm for VRPTW (Berger & Barkaoui, 2004).
The results showed that this algorithm was
highly competitive and provided some new best
known solutions. Braysy & Gendreau (2002)
presented tubu search algorithm for VRPTW
and concluded that this algorithm is a one of
the best techniques to tackle this problem.

The hybrid version which consists of ant
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colony optimization (ACO) and tabu search was
presented by Yu et al. (2011). The results
showed that this algorithm was an effective
tool for VRPTW when compared with some
other published meta-heuristics. The vehicle
routing problem with backhauls (VRPB) is one
of the interesting variations of VRP where a
vehicle does not only deliver goods to the
linehaul customers but also picks up goods
from the backhaul customers before going
back to the depot. The benefit of doing so is
to utilize the unused capacity of empty vehicle
on the way back to the depot after delivery.
For example, a coffee company delivers the
goods to its customers and picks up their raw
materials back to its factory (Casco, Golden &
Wasil 1988). Osman & Wassan (2002) presented
a reactive tabu search which was a new way
to exchange neighborhood structures for VRPB.
The results showed that this algorithm was
robust and competitive with other algorithms
that gave the best known solutions. Brandao
(2006) presented a new tabu search algorithm
for the VRPB. The computational results showed
that this algorithm outperformed existing
published algorithms. A memetic algorithm with
different local search methods was presented
by Tavakkoli-Moghaddam, Saremi & Ziacc
(2006). The results exposed the effectiveness
of exploiting power of this algorithm. Gajpal &
Abad (2009) presented multi-ant colony system
which used pheromone data to generate the
solutions. This algorithm gave some better
solutions than the others and five new best

known solutions.

In this paper, we study the VRP combining
with two variations, namely backhauls and
time windows. This problem is called the
vehicle routing problem with backhauls and
time windows (VRPBTW). Since the VRPBTW is
an NP-hard combinatorial optimization problem
(Thangiah, Potvin & Sun, 1996), the exact
algorithm is not always possible to find an
optimal solution within a limited time. For
larger problems, heuristics and meta-heuristics
are more appropriate than exact methods.

Bio-inspired intelligence known as meta-
heuristic methods is widespread for solving
various problems during the last decade.
Examples of these algorithms are Genetic
Algorithm (GA), Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), Artificial
Bee Colony algorithm (ABC), Bat Algorithm (BA),
and Firefly Algorithm (FA). However, only few
studies have been devoted to the VRPBTW.
Provin, Duhamel & Guertin (1996) presented a
genetic algorithm for solving VRPBTW. The results
of this algorithm showed that, on average,
1% of the optimum were produced by this
algorithm. Thangiah et al. (1996) described an
insertion algorithm for the VRPBTW as well as
other local search heuristics to improve the
initial solutions. Reimann, Doerner & Hartl
(2002) presented an ant system approach
which is based on the well-known insertion
algorithm proposed for the VRPTW by Solomon
(1987). The results showed that the learming and
computational time behavior of this algorithm
were equivalent to the custom-made methods.

Zhong & Cole (2005) presented a basic con-
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struction of an initial infeasible solution and
then used a guided local search to improve
the solution. Moreover, a new technique called
section planning was used to enhance the
feasibility and some of the results were better
than the best known solutions in the literature.
Ropke & Pisinger (2006) proposed a unified
heuristic for VRPB and applied the local search
heuristic to enhance the solution. This algorithm
obtained 227 new best known solutions out
of 338 problems. Kugcukoslu & Ozturk (2015)
proposed an advanced hybrid meta-heuristic
algorithm which combines tabu search algorithm
and simulated annealing algorithm to obtain
more effective solutions for the VRPBTW. The
experiment results showed that some new
best known solutions were obtained and were
closed to optimal solutions.

Various heuristics and meta-heuristics have
been applied to VRPBTW but this is not the case
for Cuckoo Search (CS). CS is a meta-heuristic
method introduced by Yang & Deb (2009).
Inspiration of this algorithm is the parasitic
spawn behavior of some cuckoo species. This
algorithm was originally designed for solving
continuous problem. Although discrete versions
of CS have been applied to the travelling
salesman problem (Ouaarab, Ahiod & Yang,
2014) and VRP (Zheng et al., 2013), to the best
of our knowledge, it had never been applied
to VRPBTW. Thus, we propose CS algorithm for
VRPBTW in this study.

This paper is organized as follows. Firstly,
we introduce a brief concept of CS, and
then describe the main steps of the algorithm.

Secondly, we explain the nearest neighbor with

roulette wheel selection method for generating
a set of initial solutions; and the 1-move
intra-route exchange and A-interchange for
improving the solutions. Then, we report the
computational results. Finally, we discuss and

make the conclusions for this study.

The General Concept of Cuckoo Search

A cuckoo is an extraordinary bird because
of its aggressive breeding behavior. The female
cuckoos lay eggs in the nest of other host birds
to let them hatch and brood young cuckoo
chicks. If the host birds discover that the eggs
are not theirs, they can either get rid of the
cuckoo eggs or abandon their nests and build
new ones. However, some cuckoo species can
mimic color and pattern of eggs in a few chosen
host species to reduce chance of their eggs
being abandoned. In addition, a cuckoo chick
always mimics the call of the host chick to
gain more feeding opportunity.

The cuckoo search starts by generating a
number of host eggs (initial solutions) and
assign them to nests. In the simplest approach,
each nest can always have only a single egs.
A cuckoo randomly selects a host nest and
lays its egg (neighborhood search) into the nest.
The aim is to replace a not-so-good solution
with a new and better solution (cuckoo egg).
A cuckoo egg will be abandoned and the host
bird will build a completely new one (generating
a new solution) when it discovers the egg is
not its own. In summary, there are three ideal
rules for this: (1) each cuckoo lays one egg at
a time and selects a nest randomly; (2) the

best nest with a high quality egg will be carried

H1UNM35UTRIAMAIMATN TCl (NFUR 1) da1vnuyseAansuasdpuaEns



a v

140 sasileyayrfiTand U7 8 atfu Supplementary Uszanfieusuanan 2559

over to the next generation; (3) the number of
host nests is fixed and a cuckoo egg is discovered

with a probability p, € [0,1].

Main Steps of Cuckoo Search
The steps of the CS can be described as
follows:

Step 1 Generate a set of initial solutions (host
eggs) by the nearest neighbor with
roulette wheel selection method and
assign each egg to a host nest.

Step 2 Evaluate the fitness of each solution
and remember the global best solution.

Step 3 Choose randomly a host nest and then
apply the neighborhood search on the
host egg to generate a cuckoo egg. The
host egg will be replaced with the
cuckoo egg if the new cuckoo egg is
better than the old one.

Step 4 Abandon the worse nest with the prob-
ability p, and generate a new one.

Step 5 Update the global best solution if a
solution has better quality than the
current best one.

Step 6 If the number of iterations reaches the
maximum, then the algorithm finishes.

Otherwise, go to Step 3.

Initial Solution Generation for CS

The nearest neighbor heuristic (NN) is one
of the classical methods for solving the
VRPBTW. This method finds the solution by
choosing the closest customer from the last
node to be next customer in the route while
preserving the capacity, time windows, and

backhaul feasibilities. In general, the closeness

is the reciprocal of the Euclidean distance.
Kiagukoglu & Oztirk (2015) presented an
improved nearest neighbor heuristic (INN),
which computed the closeness from the
reciprocal of the weighted sum of three
factors, namely the direct distance between
the two customers, the urgency of the delivery
of the next customer, and the time remaining
until the vehicle’s last possible service start.

The INN algorithm starts a tour with the
depot. Next, it adds the feasible closest
unassigned customer into the tour until no
more unassigned customer can be added, in
which case the tour is finished and the process
repeated with a new tour. If all customers are
assigned, the initial solution is obtained. The
closeness of customer i to customer j, denoted
by closeness;, is computed by determining the
reciprocal of proximity;, which is defined as:
proximity; = ac;+ph;+yv;, where a+f+y = 1,
a, f,y=0, Cj denotes the distance expressed
as time from customer i to customer j, hy denotes
the idle time before servicing customer j after
customer i, and v; denotes the urgency of
delivery to customer j after customer / expressed
as the time remaining until the vehicle’s last
possible service start for customer j.

In this paper, we propose the nearest
neighbor with roulette wheel selection method
(NNRW) which is a combination of a roulette
wheel selection method (Holland, 1975) and
the improved nearest neighbor (INN) heuristic
(Kuctkoslu & Ozturk, 2015) for generating the
initial solutions. The closeness; which is the
reciprocal of proximity; is defined the same way
the INN heuristic describes. The NNRW method
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can be explained as follows.

During a tour construction where customer
i is our current customer, let p; be the selection
probability of customer j to be served next
after customer j. Let U be the set of all unas-

signed customers. Then p; is calculated by:

closeness;

Pr= Z closeness
hel ih

forj e U

We define g; = Zj:ph forj € U. Then a random
number r vvhiclhzlranges between 0 and 1 is
selected for spinning the roulette wheel. If
r < g,, then choose the first customer in U to
be the next customer for the vehicle. Otherwise,
if gy <r < g then choose the j customer
in U to be the next customer where 2 < < |U].
The assigned customers are discarded from U
to prevent duplicate customers in a tour.

The initial solution construction always
starts a tour with the depot, and then finds
the next customer by the nearest neighbor with
roulette wheel selection method. If the next
customer violates the constraints (the capacity
constraints, the time windows constraints, and
the backhaul constraints), we spin the roulette
wheel again to find a new one. If the new one
is still not feasible, we end this tour and begin
a new tour. This process is repeated until all

customers are served.

Neighborhood Search

The definition of a neighborhood of a solu-
tion in a continuous problem is well known,
but this is not always the case for a combina-
torial problem. In VRPBTW, a neighbor of a

solution is generated by changing the order of
visited customers. In this study, this can be
accomplished by the 1-move intra-route
exchange (Chiang & Russell, 1997) and the
A-interchange (Osman, 1993).

The idea of 1-move intra-route exchange
is randomly removed one customer (linehaul
or backhaul) from a route and inserted back
to the same route in a different position. The
solution is accepted if it can reduce the total
cost while the capacity constraints, the time
windows constraints, and the backhaul constraints
are not violated. An example of 1-move is
shown in Figure 1.

The A-interchange is a technique which
combines many methods such as insertion,
swap, insert section, and swap section. The idea
of A-interchange is to interchange customers
(linehauls or backhauls) between routes where
A is a limit on the number of customers to be
exchanged. The operator (A, A,) on routes (p, g)
means exchanging A, customers on route p
with A, customers on route g, where A, A, <A.
The improved solution is accepted if the total
cost is decreased while maintaining the capacity,
time windows, and backhaul feasibility. An
example of operator (1, 0) which removes
customer 4 in the first route and then adds
it in another route is given in Figure 2. This
operator is similar to the insertion algorithm.
As shown in Figure 3, the operator (1, 2)
exchanges customer 4 in the first route with
customer 8 and customer 9 in the second route.
This operator is similar to the swap section

algorithm.
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| D Depot O Linehaul Customer O Backhaul Customer

Figure 1 An Example of a 1-move

| O oepot O tinehaut customer () Backhaul Customer |

Figure 2 Example of operator (1, 0)

| O oepot O Linehaut customer () Backhaul Customer |

Figure 3 Example of operator (1, 2)

Computational Results

The proposed algorithm was coded in
Microsoft Visual C# 2010 Express and executed
on a PC with 2.5 GHz Intel Core2 Duo CPU and
4 GB memory. As for this experiment, the
algorithm parameters were assigned as follows:
a=04,5=039=03 (Kicikoglu & Oztirk,
2015: 60-68), the number of host nest = 15,
p, = 0.25 (Yang and Deb, 2009: 210-214), the
size of A-interchange operator = 4, maximum
number of iterations = 300.

We tested NNRW algorithms on the bench-
mark problems sets (R101-R105) developed by
Gelinas et al. (1995) for the VRPBTW. For each

problem, 100 customers are located uniformly
over the service area with a short scheduling
horizon. The small and medium problems are
obtained by taking the first 25 and 50 customers
respectively. Moreover, for each problem size,
three problems are generated by randomly
selecting 10%, 30% and 50% of the nodes to be
backhaul customers without changing other
attributes. The results are shown in Table 1.

In Table 1, the first column represents the
number of customers in the problem, name
of problems are shown in the second column,
BH (%) denotes the percentage of backhauls,
Dist shows the total distance of solution, NV
indicates the number of vehicles used in the
solution. The Average Dist and SD columns
indicate the average and the standard devia-
tion calculated from 10 independent runs of
NNRW. The best solutions of NNRW algorithm
from these runs are represented by Best Dist,
and the computational time in seconds is
presented in the CPU time column. The %Gap,,,
is computed by the following formula:

(NNRW solution) = (INN solution)

%Gap,,, = x 100
4 INN solution

%Gap;,,, represents the quality of the NNRW
solutions in terms of improvement percentage
over the INN solution, where a negative value
indicates that NNRW solution is better than the
INN solution, zero value indicates that NNRW
solution is equal to the INN solution, and a
positive value indicates the NNRW solution is

worse than the INN solution.
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Table 1 Comparison of the NNRW solutions with NN and INN for VRPBTW

143

Nearest Neighbor
Solutions (NN)

Improved Nearest
Neighbor Solutions (INN)

Nearest Neighbor with
Roulette Wheel Selection Solutions (NNRW)

Size Prob BH (%) %Gap;,,
Dist NV cpu Dist NV CPU Average SD  Best Dist NV cpu
time Time Dist time

n=25 R101 10 662.1 10 0.18 662.1 10 0.21 666.70 16.07 643.4 9 0.25 -2.82
30 7353 10 0.33 721.8 10 0.32 740.23 8.29 721.8 10 0.26 0.00

50 693.1 11 0.21 678.8 10 0.19 689.46 20.75 676.8 10 0.29 -0.29

R102 10 564.2 7 0.18 563.5 7 0.20 576.28 28.02 563.5 7 0.31 0.00
30 629.6 10 0.57 628.1 9 0.90 630.77 2.63 628.1 9 0.45 0.00

50 591.6 8 0.18 586.4 8 0.22 596.28 10.67 584.4 8 0.35 -0.34

R103 10 507.1 6 0.20 488.8 6 0.22 508.13 9.90 488.8 6 0.27 0.00
30 534.8 6 0.16 534.0 7 0.14 538.85 21.00 514.8 7 0.25 -3.60

50 535.2 7 0.19 497.4 6 0.22 506.58 19.23 490.6 6 0.29 -1.37

R104 10 486.2 5 0.22 465.5 5 0.23 47191 10.20 453.4 5 0.27 -2.60
30 517.4 6 0.16 5133 6 0.14 504.77 16.39 476.3 6 0.22 -7.21

50 506.5 5 0.17 500.5 5 0.14 487.69 20.28 465.4 5 0.19 -7.01

R105 10 579.6 7 0.19 565.1 7 0.20 585.34 22.45 565.1 7 0.24 0.00
30 633.4 8 0.21 632.9 8 0.20 642.08 7.34 632.9 8 0.26 0.00

50 639.2 8 0.15 635.5 9 0.18 633.06 18.24 591.1 8 0.20 -6.99

n=50 R101 10 1175.5 16 0.19 1173.2 15 0.23 1156.30  18.27 1134.0 15 0.43 -3.34
30 1223.2 16 0.22 1218.8 16 0.29 1233.47  16.85 1215.0 16 0.39 -0.31

50 1203.1 16 0.25 1190.5 16 0.27 1199.93 8.52 1183.9 16 0.38 -0.55

R102 10 994.3 12 0.34 987.8 12 0.43 1010.6 19.93 977.0 12 0.52 -1.09
30 1091.1 14 0.22 1081.2 14 0.28 1079.18  23.00 1054.7 14 0.34 -2.45

50 1100.9 14 0.18 1100.3 14 0.22 1086.25  20.86 1060.9 14 0.32 -3.58

R103 10 877.8 10 0.19 874.9 10 0.37 860.93 20.69 833.7 10 0.49 -4.71
30 955.3 12 0.23 951.7 12 0.22 938.85 21.69 894.4 11 0.38 -6.02

50 947.6 11 0.3 939.1 11 0.34 931.99 26.38 896.4 10 0.44 -4.55
R104 10 792.1 7 0.24 784.8 8 0.25 739.75 22.20 704.3 7 0.38 -10.26
30 795.8 0.31 785.6 0.35 791.10 24.46 745.9 8 0.48 -5.05

50 7717 0.35 771.6 0.46 788.95 14.37 767.0 8 0.50 -0.60

R105 10 1091.5 12 0.17 1091.5 13 0.24 1030.63  28.48 983.3 12 0.38 -9.91
30 1084.3 13 0.21 1075.6 14 0.26 1077.62  23.40 1053.2 13 0.34 -2.08

50 1078.4 12 0.26 1059.2 12 0.33 106559  22.75 1026.3 12 0.42 -3.11

n=100 R101 10 2072.7 28 0.58 1914.5 25 0.56 1859.44 2833  1811.6 24 1.21 -5.37
30 2091.2 26 0.95 1978.7 25 0.86 1937.07 2695  1898.8 24 1.04 -4.04

50 1992.0 26 2.15 1990.2 27 4.52 197386 2672  1944.1 26 3.54 -2.32

R102 10 1687.8 22 0.85 1671.8 21 1.00 1689.72 3540  1628.8 21 1.14 -2.57
30 1755.7 23 1.05 1733.7 22 1.20 174387 2038  1716.2 23 1.45 -1.01

50 2001.8 26 0.55 1891.2 25 0.51 1800.87  23.71 1756.2 22 0.97 -7.14

R103 10 1457.4 19 0.54 1454.2 19 0.59 142471 1574  1399.8 18 1.02 -3.74
30 1478.8 18 1.03 1459.0 17 1.73 146799  23.11 1439.2 17 2.07 -1.36

50 1563.5 20 1.11 1519.5 19 1.27 153540 12.92 1514.2 19 1.78 -0.35

R104 10 1206.3 14 1.30 1152.3 13 1.44 121411 3757  1148.1 13 231 -0.36
30 1210.7 14 2.29 1201.7 14 5.62 123433 2428 1196.4 14 4.21 -0.44

50 1274.8 14 0.96 1274.7 15 1.17 1289.21 2833 12447 14 2.22 -2.35

R105 10 1632.1 19 0.48 1627.6 20 0.56 1609.73 3376  1557.2 18 1.19 -4.33
30 1626.3 20 0.75 1621.7 19 1.40 1684.87 3655  1612.3 19 1.68 -0.58

50 1724.2 21 0.99 1699.8 21 1.37 172085 4486  1683.4 19 1.83 -0.96
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In Table 1, the %Gap;,,, column shows that
the NNRW solutions are better or equal to INN
solutions for all instances. The remarkable
improvements (more than 10%) can be seen
in R104 for 50 customers with 10% backhauls.
Although the NNRW method used more execu-
tion time than INN algorithm for some instances,
these results indicate that NNRW algorithm was
more effective than INN heuristic in terms of
solution quality.

To evaluate the efficiency of CS, we
compared the CS solutions with the best
known solutions collected from many papers
in various instances as presented in Table 2.
The other collected algorithms were Push-
Forward Insertion Heuristic (PFIH) (Thangiah et al.,
1996), Genetic Algorithm (GA) (Potvin et al,,
1996), Hybrid Meta-heuristic Algorithm (HMA)
(Kuictkoslu & Oztiirk, 2015), and Unified Heuristic
(UH) (Ropke & Pisinger, 2006). The numbers
with bold face font in each row indicates the
best known solution for that problem, and the
%Gap,,.,; N the last column is calculated by
the following formula:

(CS solution) - (the best known solution)

%GaP; . = x 100.
pest the best known solution

where a positive value indicates that our solu-

tion is worse than the best known solution,

zero value indicates that CS solution is equal
to the best known solution, and a negative
value indicates our proposed algorithm can
find a new best known solution.

For small problems with 25 customers, the
proposed algorithm obtained 12 solutions that
were equal or better than the best known
solutions out of 15 instances. The new best
known solution was found in the R101 problem
with 50% backhauls. From Table 2, CS performed
better than PFIH, GA, and HMA in terms of
number of best case solutions.

For medium problems with 50 customers,
our algorithm obtained 2 matching best known
solutions and 5 new best known solutions out
of 15 problems, namely, the R101 problem with
10% backhauls, the R102 problem with 10%,
the R104 problem with 50%, the R105 problem
with 10% and 50% backhauls. According to
Table 2, CS still outperformed PFIH, GA, and
HMA in terms of number of best case solutions.

For large problems with 100 customers,
the proposed method underperformed the
other methods in terms of best known solutions
except for two cases, namely, the R101 problem
with 10% and 30% backhauls. Although CS
underperformed GA and HMA, it performed
better than PFIH while comparable with UH in

terms of number of best case solutions.
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Table 2 Comparison of the CS solutions with other algorithms for VRPBTW

cs PFIH GA HMA UH
Size Prob BH (%) %GAP ot
Dist NV Dist NV Dist NV Dist NV Dist NV

n=25  R101 10 643.4 9 681.7 9 643.4 9 643.4 9 - - 0.00
30 721.8 10 716.5 9 721.8 10 7218 10 - - 0.74

50 676.8 10 700.6 9 682.3 10 676.8 10 - - 0.00

R102 10 563.5 7 565.1 7 563.5 7 563.5 7 - - 0.00
30 628.1 9 629.3 9 622.3 9 628.1 9 - - 0.00

50 584.4 8 585.4 7 584.4 8 584.4 8 - - 0.00

R103 10 478.8 6 496.2 6 476.6 6 478.8 6 - - 0.46
30 507.0 7 520.4 6 507.0 7 507.0 7 - - 0.00

50 483.0 6 4380.4 6 483.0 6 483.0 6 - - 0.00

R104 10 452.8 5 463.1 5 452.8 5 453.8 5 - - 0.00
30 473.1 6 470.1 6 468.5 6 468.5 6 - - 0.98

50 446.8 5 4478 5 446.8 5 446.8 5 - - 0.00

R105 10 565.1 7 591.7 7 565.1 7 565.1 7 - - 0.00
30 623.5 8 630.6 77 630.2 8 623.5 8 - - 0.00

50 591.1 8 592.9 7 592.1 7 592.1 7 - - -0.17

n=50  R101 10 1133.3 15 1160.3 13 1138.1 14 1135.8 15 - - -0.22
30 1191.6 16 1224.6 15 1192.7 16 1191.6 16 - - 0.00

50 1183.9 16 1175.6 16 1183.9 16 1183.9 16 - - 0.71

R102 10 976.5 12 978.8 12 976.8 12 976.8 12 - - -0.03
30 1054.6 14 1034.9 14 1029.2 13 1046.0 14 - - 2.47

50 1059.7 14 1061.6 14 1059.7 14 1061.6 14 - - 0.00

R103 10 818.8 9 844.3 10 813.3 9 815.5 9 - - 0.68
30 894.4 11 917.8 11 892.7 10 889.3 11 - - 0.19

50 889.0 10 903.4 10 885.5 10 887.7 10 - - 3.92

R104 10 698.2 7 691.4 7 689.2 6 687.7 7 - - 1.53
30 742.3 8 743.8 8 7515 7 736.8 8 - - 0.75

50 734.5 8 765.6 7 7414 7 738.2 8 - - -0.50

R105 10 972.8 11 996.2 11 1002.5 10 978.5 11 - - -0.58
30 1027.1 13 1060.5 11 1047.8 11 1026.7 12 - - 0.04

50 993.4 11 1028.6 11 1018.0 11 996.2 11 - - -0.28

n=100 R101 10 1805.7 24 1842.3 24 1815.0 23 1811.6 23 1818.9 22 -0.33
30 1886.9 24 1928.6 24 1896.6 23 1891.1 24 1959.6 23 -0.22

50 1924.3 25 1937.6 25 1905.9 24 1911.2 25 1939.1 24 0.96

R102 10 1624.1 20 1654.1 20 1622.9 20 1623.7 20 1653.2 19 0.07
30 1705.6 22 1764.3 21 1688.1 20 1724.0 22 1750.7 22 1.04

50 1757.8 22 1745.7 21 1735.7 21 1759.8 23 1775.8 22 1.27

R103 10 1379.7 17 1371.6 15 1343.7 16 1346.9 16 1387.6 15 2.68
30 1407.7 16 1477.6 16 1381.6 15 1385.9 16 1390.3 15 1.89

50 1474.7 19 1543.2 17 1456.6 17 1465.0 18 1456.5 17 1.24

R104 10 1145.2 13 1220.3 13 1117.7 12 1093.4 12 1084.2 11 5.63
30 1167.8 14 1303.5 12 1169.1 12 1136.6 12 1154.8 11 2.74

50 1197.3 14 1346.6 13 1203.7 13 1189.6 13 11914 11 0.65

R105 10 1523.7 18 1553.4 17 1621.0 17 1516.0 17 1561.3 15 0.51
30 1602.2 19 1643.0 18 1652.8 16 1581.5 17 1583.3 16 1.31

50 1629.6 19 1657.4 18 1706.7 18 1604.1 18 1710.2 16 1.59
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Result Discussion

When comparing the results in terms of
the number of best case solutions, the CS
algorithm is competitive with the other methods
in literature for solving small and medium size
VRPBTW problems. However, for some instances
CS underperformed the existing algorithms
especially GA (Potvin, Duhamel & Guertin,
1996) and HMA (KuicUkoslu & Ozturk, 2015). We
speculated that there are two main reasons
for this. First, the CS algorithm generates only
initial 15 solutions for all instances while the
GA (Potvin, Duhamel & Guertin, 1996) produces
100 initial solutions for small and medium size
problem and 200 initial solutions for large size
problem. Therefore, the GA can explore more
in the solution space and get the better solu-
tions than the CS algorithm. Second, the HMA
(Kuctkoglu & Ozturk, 2015) is a hybrid meta-
heuristic which is combined with tabu search,
that prevents the search from cycling back to
previously visited solutions, and simulated
annealing algorithm, that prevents from trapping
in the local optimum while the CS algorithm
does not have those strategies. This is one of

the advantages of hybrid algorithm.

Conclusions

In this paper, we present a cuckoo search

(CS) algorithm to solve the VRPBTW problem.
In the solution construction part, we use the
nearest neighbor with roulette wheel selection
method (NNRW) for generating a set of initial
solutions. The solutions are iteratively improved
within the CS framework by the neighborhood
search algorithms, namely the 1-move intra-route
exchange and the A-interchange. The NNRW
algorithm is compared with the general nearest
neighbor algorithm (NN) and the improved
nearest neighbor algorithm (INN) through the
benchmark instances. The results show that
NNRW is superior to NN and INN heuristic in
terms of solution quality. In addition, CS algorithm
was compared with other methods, namely
Push-Forward Insertion Heuristic (PFIH), Genetic
Algorithm (GA), Hybrid Meta-heuristic Algorithm
(HMA), and Unified Heuristic (UH). The results
showed that the proposed algorithm was able
to give best known solutions or found the
new best known solutions for some instances,
especially problems with small and medium
sizes. Hence, it is a competitive method
for solving small and medium size VRPBTW
problems. Further research can be done to
enhance CS algorithm by combining with
other heuristics. Hybrid heuristics can make the
CS algorithm approach more effective for
VRPBTW.
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