

แขนเทียมเลโก้เพื่อเด็ก ปรับแต่งได้ตามใจตัว

Lego arm lets kids build their own prosthetics

Every child wants to be loved and to be a center of attention. Particularly, special needs children, as they have to deal with disabilities in daily life, strong self-esteem is needed.

With an aim to make the customisable prosthetics for kids to use, build their own and play with friends to avoid feeling isolated and different, the Lego-compatible prosthetic arm filled with fun and creativity was created.

The Lego arm has won the top prize at Netexplo, an innovation summit in Paris. And it was awarded the prize for Open Design Student in the 2015 Core77 Design Awards in 2015.

Carlos Arturo Torres, from the Umea Institute of Design in Sweden, designed the IKO Creative Prosthetic System for his final project in 2014. The IKO is compatible with

Lego accessories that can be customised, such as adding a space ship with a laser or Lego grippers. While currently unavailable for sale, the prosthetic arm is estimated to cost US\$5,000, with a recurring fee of US\$1,000 for the 3D printed socket.

เด็กทุกคนย่อมต้องการความรักและเป็นจุดสนใจเฉพาะอย่างยิ่งเด็กพิการที่ต้องผจญกับความยากลำบากในการใช้ชีวิตประจำวัน เด็กเหล่านี้ควรได้รับการเสริมสร้างความมั่นใจในตัวเองอย่างสูงเป็นพิเศษ

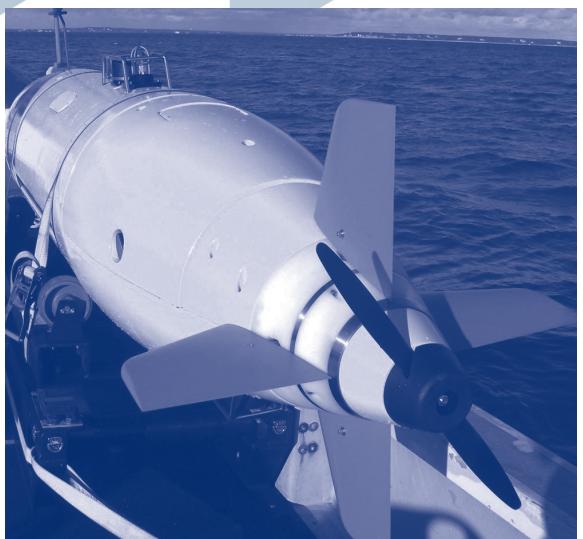
แขนเทียมเลโก้ไนสร้างขึ้นโดยทำงานร่วมกับตัวต่อเลโก้เพื่อให้เด็กเกิดความสนุกและมีความคิดสร้างสรรค์ ด้วยจุดประสงค์ที่ต้องการสร้างแขนเทียม นวัตกรรมที่ปรับแต่งได้ตามใจชอบ ให้นำไปใช้สร้างสรรค์สิ่งใหม่ ๆ เล่นกับเพื่อนได้ หลักหนี้ความรู้สึกแบปลแยกและแตกต่าง

แขนเทียมเลโก้เพื่อเด็กได้รับรางวัลชนะเลิศจากการประชุมสุดยอดนวัตกรรม Netexplo ที่กรุงปารีส และยังคว้ารางวัล Open Design Student จากงาน Core77 Design Awards ปี 2558

คาร์ลลส อาร์ทูร์ ตอร์เรส จากสถาบัน Umea Institute of Design ประเทศสวีเดน เป็นผู้ออกแบบระบบกายประดิษฐ์ชิ้งสร้างสรรค์ไอเคโอ ชิ้งเป็นผลงานจากการศึกษาในปี 2557 โดยสร้างให้เชื่อมต่อกับอุปกรณ์ตัวต่อเลโก้ได้ เช่น ต่อขึ้นเป็นยานอวกาศติดเลเซอร์หรือแขนเทียมตัวต่อเลโก้ ปัจจุบันยังไม่มีจำหน่าย แต่แขนเทียมนี้คาดว่าจะมีสินนราคากลางๆ 5,000 ดอลลาร์สหรัฐ (ราคากลางๆ 178,348 บาท) หากค่าธรรมเนียมประจำปี 1,000 ดอลลาร์ (ราคากลางๆ 35,668 บาท) สำหรับค่าเบี้ย维护 แขนเทียมสามมิติ

สร้างศูนย์วิจัยและพัฒนา ยานใต้น้ำอัตโนมัติ

New AUV facility to be built


A new home of underwater robotic technology has been revealed to be designed by Launceston firm Artas Architects and located at the University of Tasmania's Australian Maritime College (AMC) in Launceston.

Aiming to develop new data collection capabilities, improve reliability and increase autonomy of underwater vehicles, the AU\$750,000 facility will be a hub for world-class Autonomous Underwater Vehicle (AUV) research and technology.

Known as unmanned underwater vehicles and are increasingly used in the scientific, military and commercial sectors, AUVs can be programmable to perform underwater survey missions, allowing research to take place in extremely remote undersea locations.

In addition, to further the understanding of the Antarctic's role in the world's climate, the facility set to be completed in late 2016, will house a new, large under-ice capable AUV under the Antarctic Gateway Partnership project, which is eight metres long and weighs three tonnes. It can transit more than 100 kilometres, while collecting data from the sea floor at depths of about 4,000-5,000m, and beneath ice shelves and sea ice.

มีการเปิดเผยว่าจะสร้างศูนย์วิจัยและพัฒนาฯ ให้น้ำอัตโนมัติแห่งใหม่ ซึ่งออกแบบโดยบริษัท Artas Architects จากลอนเชลตัน โดยศูนย์วิจัยนี้จะตั้งอยู่ใน วิทยาลัยเทคโนโลยีทางทะเล (ເອເອັມຊີ) ລອນເຊນດັນ

ในมหาวิทยาลัยแทลมาเนีย ประเทศออสเตรเลีย

ศูนย์วิจัยก่อตั้งขึ้นเพื่อพัฒนาขีดความสามารถในการเก็บรวบรวมข้อมูลใต้ท้องทะเลใหม่ ๆ ปรับปรุงความน่าเชื่อถือของข้อมูล ตลอดจนเพิ่มจำนวนยานใต้น้ำอัตโนมัติไว้คันขับ โดยใช้งบฯ สร้าง 750,000 ดอลลาร์ออสเตรเลีย (ราว 19,328,404 บาท) โดยจะเป็นศูนย์กลางด้านการศึกษาวิจัยและเทคโนโลยีของยานใต้น้ำอัตโนมัติไว้คันขับ (ເອງວິ) ระดับโลก

ເອງວິเป็นที่รู้จักกันดีว่าเป็นยานใต้น้ำอัตโนมัติไว้คันขับ และมีการใช้งานเพิ่มขึ้นในวงกว้างอย่างหลัก หลาย อาทิ ด้านวิทยาศาสตร์ ทางทหาร และด้านพาณิชย์ ตั้งโปรแกรมเพื่อทำงานในการกิจกรรมสำรวจใต้น้ำ ต่าง ๆ โดยไม่ต้องพึ่งพาผู้ควบคุม ช่วยให้เข้าถึงพื้นที่ใต้ท้องทะเลที่อยู่ห่างไกล

นอกจากนี้การจัดตั้งศูนย์วิจัยแห่งใหม่เชิงค้าด้วยจะแล้วเสร็จในปลายปี 2559 จะช่วยเพิ่มความเข้าใจในบทบาทของข้าวโลกให้ที่มีต่อภูมิภาคโลกได้มากขึ้น โดยจะใช้เป็นสถานที่รองรับເອງວິสำหรับน้ำดิ่ง ภูมิภาค ให้โครงการ Antarctica Gateway Partnership ซึ่งເອງວິนี้ยาว 8 เมตร และมีหนาแนก 3 ตัน ทรงประสีน้ำเงินในการทำงานใต้ชั้นน้ำแข็ง เดินทางได้ยาวนานกว่า 100 กิโลเมตร พร้อมเก็บข้อมูลจากพื้นใต้ท้องทะเลที่ระดับความลึก ราว 4,000-5,000 เมตร ทั้งใต้ทึบน้ำแข็งและน้ำแข็งทะเล