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Determining of Noises in Computed Radiography Image

Using Algorithm J48
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ABSTRACT ARTICLE INFO

The objective of this study was to classify the type of noise present in a Computed Article history:
Radiography (CR) image by the J48 algorithm. A TOR CDR radiography phantom was ~ Received 24 May 2016
Received in revised form

14 July 2016
of the CR image of the phantom by replacing the color in entire area having similar Accepted 22 July 2016

supposed to represent a patient. The process of the study started with the refinement

color with the average color. This refined image was assumed to be the originally noise Available online

free image. The instances used in the J48 algorithm were created by overlaying 100 25 December 2017

samples of each of three types of noise, Gaussian, Poisson and impulse, to the original Keywords:
image. Here, Mean, Standard Deviation (SD), Mean Square Error (MSE) and Peak Classification
Signal to Noise Ratio (PSNR) were features extracted from the instances and it was Noise

found that a combination of using Mean and PSNR as considering features showed Computed Radiography
the best performance in noise classification. Then the training and testing data set was

constructed by overlaying 300 samples of each type of noise to the original image. The

obtained model was evaluated, which had 94.22% correctness, 7 levels, 28 nodes and

15 decision tree rules for noise type classification. As a result, this model classified

the CR image noise to be of Poisson type.
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