THE USE OF FACTOR ANALYSIS FOR INSTRUMENT DEVELOPMENT IN BEHAVIORAL SCIENCES

Main Article Content

สุภมาส อังศุโชติ

Abstract

Factor analysis is the statistical method used to reduce the number of variables by grouping correlated variables into the variable dimension form. This is called a “factor”. Each factor stands for a latent variable which the researchers need to study. Factor analysis can be divided into 2 types, namely, exploratory factor analysis and confirmatory factor analysis. Both types of factor analysis are used to develop instruments in the field of behavioral science. Exploratory factor analysis is used when the researchers want to know the amount of common factors in each trait. Confirmatory factor analysis is used to examine the factor’s construct validity. Sometimes researchers combine both types together: collecting data from the sample set 1 for the exploratory factor analysis and then using the same instrument to collect data from the sample set 2 for the confirmatory factor analysis to examine the validity across groups.

Article Details

How to Cite
อังศุโชติ ส. (2018). THE USE OF FACTOR ANALYSIS FOR INSTRUMENT DEVELOPMENT IN BEHAVIORAL SCIENCES. Sripatum Review of Humanities and Social Sciences, 15(1), 125–135. Retrieved from https://so05.tci-thaijo.org/index.php/spurhs/article/view/116010
Section
บทความวิชาการ

References

นงลักษณ์ วิรัชชัย. 2542 โมเดลลิสเรล: สถิติวิเคราะห์สำหรับการวิจัย. พิมพ์ครั้งที่ 3 กรุงเทพฯ: โรงพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย.

สุภมาส อังศุโชติ และคณะ. 2557. สถิติวิเคราะห์สำหรับการวิจัยทางสังคมศาสตร์และพฤติกรรมศาสตร์: เทคนิคการใช้โปรแกรม LISREL. พิมพ์ครั้งที่ 4 (ฉบับปรับปรุง) กรุงเทพฯ: เจริญดีมั่นคงการพิมพ์.

Bollen, K. A, 1989. Structural Equations with Latent Variables. New York : Wliey.

Diamantopoulos, A. & Siguaw, A.D. 2000. Introducing LISREL: A guide for the uninitiated. Sage Publications, London.

Hair, J. F. and others. 2010. Multivariate Data Analysis. 7th ed. New Jersey: Pearson Prentice-Hall .

Huang, Y.-C., & Lin, S.-H. 2014. “Assessment of Charisma as a Factor in Effective Teaching.” Educational Technology & Society, 17 (2), 284–295.

Kaplan, D. 2000. Structural Equation model: foundation and extensions. Sage Publications, Thousand Oake.

Kline, P. 1986 A Handbook of Test Construction: Introduction to Psychometric Design. Volume 931 of University paperbacks. New York: Methuen.

Nunnally,J.C.1978. Psychometric theory. (2nd ed.). New York, NY: McGraw-Hill.

Pett, M.A.,Lackey,N.R.,& Sullivan,J.J.2003. Making sense of factor analysis: The use of factor analysis for instrument development in health care research. Thousand Oaks, CA: Sage.

Rosen, B.L. 2013. (In Press). “Understanding statistics in health science: Exploratory factor analysis extraction methods.” The Health Education Monograph Series. Volume 30, Number 2.

Tabachnick,B.G.,& Fidell,L.S.(2007).Using multivariate statistics. Boston,MA: Pearson.