MONTE CARLO SIMULATION USING LISREL FOR ANALYZING NONLINEAR STRUCTURAL EQUATION MODELING
Main Article Content
Abstract
Structural equation modeling comprises both the linear structural equation modeling and the nonlinear structural equation modeling, both of which are widely applied in behavioral and social sciences. The nonlinear structural equation modeling has been used in the last few decades in foreign research. Monte Carlo simulations are used to analyze nonlinear structural equation modeling in various conditions. The main steps in Monte Carlo simulations are as follows 1) Creating a parametric model, 2) generating a set of random inputs, and 3) analyzing the results using the various statistics. The Monte Carlo simulations are useful for estimating parameters in complex models, the large data, and nonlinear models. The specific instructions for nonlinear structural equations modeling are developed in many programs such as Mplus, LISREL, Visual-PLS, R software package. This article will present only the Monte Carlo simulations for analysis of nonlinear structural equation modeling using LISREL Program. Although this is a difficult and complex analysis method, it should not be the cause that limits the development of the knowledge of science. It is proposed to be widely used and to expand knowledge more widely.
Article Details
1. กองบรรณาธิการสงวนสิทธิ์ในการพิจารณาและตัดสินการตีพิมพ์บทความในวารสาร
2. บทความทุกเรื่องจะได้รับการตรวจสอบทางวิชาการโดยผู้ทรงคุณวุฒิ แต่ข้อความและเนื้อหาในบทความที่ตีพิมพ์เป็นความรับผิดชอบของผู้เขียนแต่เพียงผู้เดียว มิใช่ความคิดเห็นและความรับผิดชอบของมหาวิทยาลัยศรีปทุม
3. การคัดลอกอ้างอิงต้องดำเนินการตามการปฏิบัติในหมู่นักวิชาการโดยทั่วไป และสอดคล้องกับกฎหมายที่เกี่ยวข้อง
References
เสน่ห์ พลีจันทร์, พูลพงศ์ สุขสว่าง และสุพิมพ์ ศรีพันธ์วรสกุล. 2555. “โมเดลความสัมพันธ์เชิงสาเหตุของพฤติกรรมการป้องกันโรคอุจาระร่วงรุนแรงจากเชื้ออีโคไล โดยมีการรับรู้ความสามารถในการควบคุมตนเองเป็นตัวแปรกำกับ.” วิทยาการวิจัยและวิทยาการปัญญา, 10(2), 35-44.
Abd-Elmotaleb, M., & Saha, S. K. 2013. “The role of academic self-efficacy as a mediator variable between perceived academic climate and academic performance.” Journal of Education and Learning, 2(3), 117-129.
Barendse, M. T., Oort, F. J., & Garst, G. J. A. 2010. “Using restricted factor analysis with latent moderated structures to detect uniform and nonuniform measurement bias: a simulation study.”Advances in statistical analysis, 94, 117–127.
Chin, W. W., Marcolin, B. L., &Newsted, P. R. 2003. “A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study.”Information system research, 14(2), 189–217.
Falahati, L. & Sabri, M.F. 2015. “An Exploratory Study of Personal Financial Wellbeing Determinants: Examining the Moderating Effect of Gender.”Asian Social Science, 11(4). 33 – 42.
Goodhue, D., Lewis, W., & Thompson, R. 2007. “Statistical power in analyzing interaction effects: questioning the advantage of PLS with product indicators.”Information system research, 18, 211–227.
Kelava, A., & Brandt, H. 2009. “Estimation of nonlinear latent structural equation models using the extended unconstrained approach.”Review of psychology, 16(2), 123-131.
Klein, A. G., & Muthén, B. O. 2007. “Quasi maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects.”Multivariate behavioral research, 42, 647–673.
Kroese, D.P., Brereton, T., Taimre, T., &Botev, Z.I. 2014. “Why the Monte Carlo Method is so important today.”WIREs comput stat, 6, 386-392,Doi: 10.1002/wics.1314
Moosbrugger, H., Schermelleh-Engel, K., Kelava, A., & Klein, A. G. 2009. “Testing multiple nonlinear effects in structural equation modeling: a comparison of alternative estimation approaches.” NL: Sense Publishers.
Marsh, H. W., Wen, Z., & Hau, K. T. 2004. “Structural Equation Models of Latent Interactions: Evaluation of Alternative Estimation Strategies and Indicator onstruction.”Psychological methods, 9(3), 275-300.
Muthén, L. K., & Muthén, B. O. 2010. “Mplus user’s guide (6th ed.).”LA: Muthén & Muthén.Schermelleh-Engel, K., Kerwer, M., & Klein, A. G. 2014. “Evaluation of model fit in nonlinear multilevel structural equation modeling. Frontiers in psychology, 5(181), 1-11.
Schermelleh-Engel, K., Werner, C. S, Klein, A. G., & Moosbrugger, H. 2010. “Nonlinear structural equation modeling: Is partial least squares an alternative?.”Advances in statistical analysis, 94, 167–184.