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Abstract

Recently, a disaster as Flooding and drought has damaged lives and assets. The Global Climate Models has
been tool for predicting Climate Change including a future-rainfall. Because it had coarse resolution and many models
and made from many countries, needed a downscaling process to be increasing accuracy and selecting suitable models
to use in an area. This research used 4 models of the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change (AR4) consisting of HADcm3 model, ECHAMS model, BCCR-BCM2.0 model and CGCM3.1 (T47)
model from England, Germany, Norway and Canada, respectively. Moreover, an observed rainfall-data (A.D.1965-
2014) of 5 Province from Thai Meteorological Department, consisting of Chaingmai, Nongkai, Sukhothali,
Ubonratchathani and Phuket provinces, and an Artificial Neural Networks were used to downscaling, statistic variable
was also used to appropriate models. Base on annual units, the resultant selection shown the best suitability for
HADcm3 was 3 provinces composed of Chaingmai, Nongkai and Phuket whereas BCCR-BCM and ECHAMS were
with Sukhothai and Ubonratchathani, respectively. CGCM was not suitability for any province base on annual units.
The 5-years future rainfall (A.D.2014-2018) from selectively downscaled models compared with historic rainfall data
presented a decreasing rainfall 5.22% in Chaingmai, 16.37% in Nongkai, 10.71% in Ubonratchathani and 24.17% in
Phuket while it increased 13.98% in Sukothai. The 10-years future rainfall (A.D.2014-2023) from selectively
downscaled models compared with historic rainfall data presented a decreasing rainfall 10.79% in Chaingmai, 9.4% in
Nongkai, 2.44% in Ubonratchathani and 14.68% in Phuket whilst it increased 49.68% in Sukothai. The 25-years future
rainfall (A.D.2014-2038) from selectively downscaled models compared with historic rainfall data presented a
decreasing rainfall 6.95% in Chaingmai and 1.09% in Ubonratchathani while it increased 13.98 in Sukothai, 0.68% in

Nongkai and 12.20% in Phuket.

Keywords : Global Climate Models; Climate Change; Artificial Neural Networks; water management;

ARA4; statistic variable
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