Mass Flow Analysis of Carbon Capture, Utilization, and Storage (CCUS) Potential in Thailand
Main Article Content
Abstract
This study analyzes the carbon dioxide flow in Thailand to assess the potential of Carbon Capture, Utilization, and Storage (CCUS) technologies. It utilizes data from academic literature and reports to conduct a qualitative analysis of CO2 flow within Carbon Capture and Utilization (CCU) and Carbon Capture and Storage (CCS) processes. The mass flow analysis was performed using the e!Sankey Diagram software to simulate three scenarios: Scenario 1 involves utilizing captured CO2 from industrial plants to produce various products such as beer, soft drinks, soda, urea fertilizer, and cement pellets. Scenario 2 focuses on storing all captured CO2 from industrial plants in depleted natural gas or oil reservoirs within Thailand. Scenario 3 combines both CCU and CCS approaches to evaluate the overall CO2 flow within the country’s system. The main industries analyzed include power generation, cement production, and iron and steel manufacturing, which accounted for 107,498.98 ktCO2 equivalent of greenhouse gas emissions in 2022. Post-combustion CO2 capture using amine-based absorbents was identified as the most suitable method for these industries. The analysis highlighted the potential for CO2 capture and utilization across various industrial sectors, as well as the feasibility of underground CO2 storage in Thailand. The study found that CO2 utilization and storage could reduce emissions by 25.07% under favorable conditions. In summary, CCUS technology can effectively reduce CO2 emissions from power plants, cement, and steel industries while promoting a circular economy through the beneficial reuse of captured CO2.
Article Details
References
U.S. Environmental Protection Agency, Office of Transportation and Air Quality. 2022. The 2022 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975, Executive Summary (EPA-420-S-22-001, December 2022). www.epa.gov/automotive-trends.
Intergovernmental Panel on Climate Change (IPCC). 2023. Changing State of the Climate System. In Climate Change 2021 – The Physical Science Basis. Cambridge University Press, pp. 287–422. doi:10.1017/9781009157896.004.
Metz, B., O. Davidson, H.C. de Coninck, M. Loos, and L.A. Meyer (eds.). 2005. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. United Kingdom and New York. https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf.
Nakrak, S., T. Yurata, B. Chalermsinsuwan, P. Tontiwachwuthikul, and T. Sema. 2021. Preliminary mass transfer performance of CO2 absorption into AMP-PZ-MEA ternary amines. https://ssrn.com/abstract=3821405.
Lee, S.Y. and S.J. Park. 2015. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2014.09.001.
Siriwardane, R.V., M.S. Shen, E.P. Fisher, and J.A. Poston. 2001. Adsorption of CO2 on molecular sieves and activated carbon. Energy and Fuels. 15(2): 279-284. doi:10.1021/ef000241s.
Millward, A.R. and O.M. Yaghi. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.
Thomas, S. 2008. Enhanced oil recovery – An overview. Oil and Gas Science and Technology. 9-19. doi:10.2516/ogst:2007060.
Siregar, H.A., R. Melisa, I. Irawati, Z. Zulhelmi, and F. Kamilah. 2024. The capital structure determinants in food and beverage industry. Bilancia: Jurnal Ilmiah Akuntansi. 8(3): 231. doi:10.35145/bilancia.v8i3.4476.
Ho, H.-J., A. Iizuka, E. Shibata, and T. Ojumu. 2022. Circular indirect carbonation of coal fly ash for carbon dioxide capture and utilization. Journal of Environmental Chemical Engineering. 10(5): 108269. doi:10.1016/j.jece.2022.108269.
United Nations Framework Convention on Climate Change (UNFCCC). 2024. Thailand’s First Biennial Transparency Report. https://unfccc.int/documents/645098.
The Office of the Securities and Exchange Commission. 2022. Report Industrial Statistics 2022. Thailand. https://i.index.oie.go.th/industrialStatisticsReport.aspx.
Department of Mineral Fuels, Ministry of Energy. 2022. Thailand’s petroleum supply including onshore and offshore in January–December 2022. Thailand. https://dmf.go.th/public/supply/data/index/menu/966/id/13/.
Speers, R.A., and A.J. MacIntosh. 2013. Carbon dioxide solubility in beer. Journal of the American Society of Brewing Chemists. 71(4): 242-247. doi:10.1094/ASBCJ-2013-1008-01.
Abu-Reidah, I.M. 2019. Carbonated beverages. In Trends in Non-alcoholic Beverages. Elsevier, 1-36. doi:10.1016/B978-0-12-816938-4.00001-X.
Bellia, F. 1968. Technological progress in the production of urea. In Chemical Fertilizers. Elsevier, 49-63. doi:10.1016/b978-0-08-003605-2.50011-2.
Abdul, W., Rößler, C., Kletti, H., Mawalala, C., Pisch, A., Bannerman, M. N. and Hanein, T. 2025. On the variability of industrial Portland cement clinker: Microstructural characterisation and the fate of chemical elements. Cement and Concrete Research, 189. https://doi.org/10.1016/j.cemconres.2024.107773.
Intergovernmental Panel on Climate Change (IPCC). 2015. Climate Change 2014: Synthesis Report – Longer Report.
Netherlands Environmental Assessment Agency and Joint Research Centre. 2016. Trends in Global CO2 Emissions 2016 Report.
Leeson, D., N. Mac Dowell, N. Shah, C. Petit, and P.S. Fennell. 2017. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control. 61: 71-84. doi:10.1016/j.ijggc.2017.03.020.
Organisation for Economic Co-operation and Development (OECD). 2008. CO2 Capture and Storage: A Key Carbon Abatement Option. doi:10.1787/9789264041417-en.
Parkhi, A., D. Young, S. Cremaschi, and Z. Jiang. 2023. Carbon dioxide capture from the Kraft mill limekiln: Process and techno-economic analysis. Discover Chemical Engineering. 3(1). doi:10.1007/s43938-023-00024-7.
Li, H., L. Dong, Y.T. Xie, and M. Fang. 2017. Low-carbon benefit of industrial symbiosis from a scope-3 perspective: A case study in China. Applied Ecology and Environmental Research. 15(3): 135-153. doi:10.15666/aeer/1503_135153.
McQueen, N., C.M. Woodall, P. Psarras, and J. Wilcox. 2019. CCS in the iron and steel industry. In Carbon Capture and Storage. The Royal Society of Chemistry, 353-391. doi:10.1039/9781788012744-00353.
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. 2018. Carbon capture and storage (CCS): The way forward. Energy and Environmental Science. Royal Society of Chemistry. 11(5): 1062-1176. https://doi.org/10.1039/c7ee02342a.
Hasanbeigi, A., L. Price, and E. Lin. 2012. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2012.07.019.
Abu-Zahra, M.R.M., L.H.J. Schneiders, J.P.M. Niederer, P.H.M. Feron, and G.F. Versteeg. 2007. CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse Gas Control. 1(1): 37-46. doi:10.1016/S1750-5836(06)00007-7.
Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., Fernández, J. R., Ferrari, M. C., Gross, R., Hallett, J. P., Haszeldine, R. S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R. T. J., Pourkashanian, M., Rochelle, G. T., Shah, N., … Fennell, P. S. 2014. Carbon capture and storage update. Energy and Environmental Science. Royal Society of Chemistry. 7(1): 130-189. https://doi.org/10.1039/c3ee42350f.
Rochelle, G.T. 2009. Amine scrubbing for CO2 capture. Science. 325(5948): 1652-1654. doi:10.1126/science.1176731.
Rubin, E.S., I.M.L. Azevedo, P. Jaramillo, and S. Yeh. 2015. A review of learning rates for electricity supply technologies. Energy Policy. doi:10.1016/j.enpol.2015.06.011.
Wall, T.F. 2007. Combustion processes for carbon capture. Proceedings of the Combustion Institute. 31(1): 31-47. doi:10.1016/j.proci.2006.08.123.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., Del Mar Zamora Dominguez, M., & Minx, J. C. 2018. Negative emissions - Part 2: Costs, potentials and side effects. Environmental Research Letters. Institute of Physics Publishing. 13(6). doi:10.1088/1748-9326/aabf9f.
Keith, D.W., G. Holmes, D. St. Angelo, and K. Heidel. 2018. A process for capturing CO2 from the atmosphere. Joule. 2(8): 157-1594. doi:10.1016/j.joule.2018.05.006.
Murai, S., M. Daigo, Y. Kato, Y. Maesawa, T. Muramatsu, and S. Saito. 2014. Development of hindered new amine absorbents for CO2 capture. Energy Procedia. 1933-1939. doi:10.1016/j.egypro.2014.11.203.
Rochelle, G.T. 2009. Amine scrubbing for CO2 capture. Science. 325(5948): 1652-1654. Sep. 2009. doi:10.1126/science.1176731.
Loachamin, D., J. Casierra, V. Calva, A. Palma-Cando, E.E. Ávila, and M. Ricaurte. 2024. Amine-based solvents and additives to improve the CO2 capture processes: A review. Chem Engineering. 8(6). Dec. 01, 2024. doi:10.3390/chemengineering8060129.
Borhani, T.N.G., A. Azarpour, V. Akbari, S.R. Wan Alwi, and Z.A. Manan. 2015. CO2 capture with potassium carbonate solutions: A state-of-the-art review. International Journal of Greenhouse Gas Control. 41: 142-162. Oct. 2015. doi:10.1016/j.ijggc.2015.06.026.
Kajolinna, T., K. Melin, O. Linjala, and J. Roine. 2024. Performance of novel carbonate-based CO2 post-combustion capture process. International Journal of Greenhouse Gas Control. 136. Jul. 2024. doi:10.1016/j.ijggc.2024.104173.
Krutka, H., S. Sjostrom, T. Starns, M. Dillon, and R. Silverman. 2013. Post-combustion CO2 capture using solid sorbents: 1 MWe pilot evaluation. Energy Procedia. pp. 73-88. 2013. doi:10.1016/j.egypro.2013.05.087.
Zentou, H., Hoque, B., Abdalla, M. A., Saber, A. F., Abdelaziz, O. Y., Aliyu, M., Alkhedhair, A. M., Alabduly, A. J. and Abdelnaby, M. M. 2025. Recent advances and challenges in solid sorbents for CO2 capture. Carbon Capture Science and Technology. Elsevier Ltd. 15. https://doi.org/10.1016/j.ccst.2025.100386.
Razzak, S.A., M.M. Hossain, R.A. Lucky, A.S. Bassi, and H. de Lasa. 2013. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews. 27: 622-653. doi:10.1016/j.rser.2013.05.063.
Li, G., and J. Yao. 2024. A review of algae-based carbon capture, utilization, and storage (algae-based CCUS). Gases. 4(4): 468-503. doi:10.3390/gases4040024.
Baxter, L.L., S. Burt, L. Baxter, and A. Baxter. 2009. Cryogenic CO2 capture as a cost-effective CO2 capture process. 2009.
https://www.researchgate.net/publication/264875049.
Hart, A. and N. Gnanendran. 2009. Cryogenic CO2 capture in natural gas. Energy Procedia. 69-706. doi:10.1016/j.egypro.2009.01.092.