Prediction Market Policies
คำสำคัญ:
Prediction Market, Automated Market Maker, Policy, Bank Runบทคัดย่อ
Prediction markets are a mechanism for collating participants’ beliefs into a probability that a future outcome will take place. Their historical purpose was to provide governments, management, and other leadership with accurate forecasts, in order to inform future decision-making. Participants of prediction markets are financially rewarded for accurate predictions, incentivizing the communication of well-researched, unbiased views. Using qualitative research methods and meta-synthesis of prediction market implementations, this study examines practical approaches to prediction markets, using them to inform future practices. The provision of market liquidity by Automated Market Makers (AMM) is described, and examples of AMMs are detailed.
This article provides a policy framework for prediction markets, with a view to preventing negative side effects that may arise from their practice. Areas of potential concern are examined, with the example of a bank run as a case study, and restrictions on prediction market structure and on permissible contracts are devised as necessary to avoid adverse outcomes.
เอกสารอ้างอิง
Acharya, V. V., & Yorulmazer, T. (2008). Information contagion and bank herding. Journal of Money Credit and Banking, 40(1), 215–231. https://doi.org/10.1111/j.1538-4616.2008.00110.x
Adams, H., Zinsmeister, N., Salem, M., Keefer, R., & Robinson, D. (2021). Uniswap v3 core. uniswap https://app.uniswap.org/whitepaper-v3.pdf
Agrawal, S., Delage, E., Peters, M., Wang, Z., & Ye, Y. (2009). A unified framework for dynamic pari-mutuel information market design. In Proceedings of the 10th ACM conference on Electronic commerce (pp. 255-264). Association for Computing Machinery.
Andolfatto, D., Nosal, E., & Sultanum, B. (2017). Preventing bank runs. Theoretical Economics, 12(3), 1003–1028. https://doi.org/10.3982/te1970
Angeris, G., & Chitra, T. (2020). Improved price oracles: Constant function market makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies (pp. 80-91). Association for Computing Machinery.
Aspembitova, A. T., & Bentley, M. A. (2022). Oracles in decentralized Finance: attack costs, profits and mitigation measures. Entropy, 25(1), 60. https://doi.org/10.3390/e25010060
Atanasov, P., Rescober, P., Stone, E., Swift, S. A., Servan-Schreiber, E., Tetlock, P., et al. (2017). Distilling the wisdom of crowds: Prediction markets vs. prediction polls. Management Science, 63(3), 691-706.
Atanasov, P., Rescober, P., Stone, E., Swift, S. A., Servan-Schreiber, E., Tetlock, P., Ungar, L., & Mellers, B. (2016). Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls. Management Science, 63(3), 691–706. https://doi.org/10.1287/mnsc.2015.2374
Bartoletti, M., Chiang, J. H., & Lluch-Lafuente, A. (2022). A theory of Automated Market Makers in DeFi. Logical Methods in Computer Science, Volume 18, Issue 4. https://doi.org/10.46298/lmcs-18(4:12)2022
Bell, T. W. (2011). Government prediction markets: why, who, and how. Penn State Law Review, 116, 403.
Berg, J. E., & Rietz, T. A. (2018). Longshots, overconfidence and efficiency on the Iowa Electronic Market. International Journal of Forecasting, 35(1), 271–287. https://doi.org/10.1016/j.ijforecast.2018.03.004
Berg, J., Forsythe, R., Nelson, F., & Rietz, T. (2008). Chapter 80 Results from a Dozen Years of Election Futures Markets Research. In Handbook of experimental economics results (pp. 742–751). https://doi.org/10.1016/s1574-0722(07)00080-7
Chang, C. (2014). Inaccuracy in Health Research News: A typology and predictions of scientists’ perceptions of the accuracy of research news. Journal of Health Communication, 20(2), 177–186. https://doi.org/10.1080/10810730.2014.917746
Chen, K. Y., & Plott, C. R. (2002). Information aggregation mechanisms: Concept, design and implementation for a sales forecasting problem. California Institute of Technology. https://authors.library.caltech.edu/records/n9y0a-a5y79
Collins, B., Hoang, D. T., Nguyen, N. T., & Hwang, D. (2021). Trends in combating fake news on social media–a survey. Journal of Information and Telecommunication, 5(2), 247-266. https://doi.org/10.1080/24751839.2020.1847379
Cookson, J. A., Fox, C., Gil-Bazo, J., Imbet, J. F., & Schiller, C. (2023). Social media as a bank run catalyst. Federal Deposit Insurance Corporation (FDIC). https://www.fdic.gov/analysis/cfr/bank-research-conference/annual-22nd/papers/cookson-paper.pdf
Dana, J., Atanasov, P., Tetlock, P., & Mellers, B. (2019). Are markets more accurate than polls? The surprising informational value of “just asking.” Judgment and Decision Making, 14(2), 135–147. https://doi.org/10.1017/S1930297500003375
Dosumu, O. E., Sakariyahu, R., Oyekola, O., & Lawal, R. (2023). Panic bank runs, global market contagion and the financial consequences of social media. Economics Letters, 228, 111170. https://doi.org/10.1016/j.econlet.2023.111170
Goncalo, J. A., & Duguid, M. M. (2012). Follow the crowd in a new direction: When conformity pressure facilitates group creativity (and when it does not). Organizational Behavior and Human Decision Processes, 118(1), 14–23. https://doi.org/10.1016/j.obhdp.2011.12.004
Gu, A., Wang, Y., Mascioli, C., Chakraborty, M., Savani, R., Turocy, T. L., & Wellman, M. P. (2024, November). The Effect of Liquidity on the Spoofability of Financial Markets. In Proceedings of the 5th ACM International Conference on AI in Finance (pp. 239-247). Association for Computing Machinery.
Halawi, D., Zhang, F., Yueh-Han, C., & Steinhardt, J. (2025). Approaching human-level forecasting with language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet et al. (Eds), Proceedings of the 38th International Conference on Neural Information Processing Systems (pp. 50426-50468). Curran Associates.
Hanson, R. (2012). LOGARITHMIC MARKETS CORING RULES FOR MODULAR COMBINATORIAL INFORMATION AGGREGATION. The Journal of Prediction Markets, 1(1), 3–15. https://doi.org/10.5750/jpm.v1i1.417
He, Z., & Manela, A. (2014). Information acquisition in Rumor‐Based bank runs. The Journal of Finance, 71(3), 1113–1158. https://doi.org/10.1111/jofi.12202
Heidt, C., Sandner, P., & Anders, M. (2024). Missing Links: Current trends and future potential in the application of blockchain oracles. https://www.researchgate.net/publication/380419503_Missing_Links_Current_Trends_and_Future_Potential_in_the_Application_of_Blockchain_Oracles
Ho, A. T. Y., Polgreen, P. M., & Prendergast, T. (2016). Prediction Market for disease surveillance: A case study of influenza activity. The Journal of Prediction Markets, 10(1), 68–82. https://doi.org/10.5750/jpm.v10i1.1162
Horst, U., & Naujokat, F. (2011). On derivatives with illiquid underlying and market manipulation. Quantitative Finance, 11(7), 1051–1066. https://doi.org/10.1080/14697688.2011.552517
Hull, J. C., & White, A. D. (2003b). The valuation of credit default swap options. The Journal of Derivatives, 10(3), 40–50. https://doi.org/10.3905/jod.2003.319200
Kaufman, G. G. (1988). The truth about bank runs. In C. England & T. F. Huertas (Eds), The financial services revolution: Policy directions for the future (pp. 9-40). Springer Netherlands.
Lee, A. J., & Chung, K. H. (2022). Hidden liquidity, market quality, and order submission strategies. Journal of Financial Markets, 61, 100739. https://doi.org/10.1016/j.finmar.2022.100739
Lin, Q., & Chen, Y. (2009). Gaming dynamic parimutuel markets. In S. Leonardi (Ed.), Internet and Network Economies: Vol 5929, Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-642-10841-9_64
Mishra, A., Mishra, H., & Nayakankuppam, D. (2009). The group-contagion effect: The influence of spatial groupings on perceived contagion and preferences. Psychological Science, 20(7), 867–870. https://doi.org/10.1111/j.1467-9280.2009.02371.x
Mohan, V. (2022). Automated market makers and decentralized exchanges: a DeFi primer. Financial Innovation, 8(1). 20. https://doi.org/10.1186/s40854-021-00314-5
Moore, B., & Singletary, M. (1985). Scientific sources’ perceptions of network news accuracy. Deleted Journal, 62(4), 816–823. https://doi.org/10.1177/107769908506200415
Morrison, A. D., & White, L. (2013). Reputational contagion and optimal regulatory forbearance. Journal of Financial Economics, 110(3), 642–658. https://doi.org/10.1016/j.jfineco.2013.08.011
Oesterheld, C., Treutlein, J., Cooper, E., & Hudson, R. (2023). Incentivizing honest performative predictions with proper scoring rules. In Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence: PMLR (pp. 1564-1574). Association for Uncertainty in Artificial Intelligence.
Ofir, M., & Elmakiess, T. (2025). Bank runs in the digital era: Technology, psychology, and regulation. SSRN. https://papers.ssrn.com/sol3/Delivery.cfm?abstractid=5190205
Olan, F., Jayawickrama, U., Arakpogun, E. O., Suklan, J., & Liu, S. (2022). Fake news on Social Media: the Impact on Society. Information Systems Frontiers, 26(2), 443–458. https://doi.org/10.1007/s10796-022-10242-z
Pennock, D. M. (2004). A dynamic pari-mutuel market for hedging, wagering, and information aggregation. Proceedings of the 5th ACM Conference on Electronic Commerce. https://courses.cs.duke.edu/spring07/cps296.3/pennock-ec-2004-dynamic-parimutuel.pdf
Pourpouneh, M., Nielsen, K., & Ross, O. (2020). Automated market makers. IFRO Working Paper. https://moodle.epfl.ch/pluginfile.php/2865848/mod_resource/content/1/IFRO_WP_2020_08.pdf
Rhode, P. W., & Strumpf, K. S. (2004). Historical presidential betting markets. The Journal of Economic Perspectives, 18(2), 127–142. https://doi.org/10.1257/0895330041371277
Schlegel, J. C., Kwaśnicki, M., & Mamageishvili, A. (2023). Axioms for constant function market makers. In Proceedings of the 24th ACM Conference on Economics and Computation (EC '23) (p. 1079). Association for Computing Machinery. https://doi.org/10.1145/3580507.3597720
Schotter, A., & Trevino, I. (2014). Belief elicitation in the laboratory. Annual Review of Economics, 6(1), 103–128. https://doi.org/10.1146/annurev-economics-080213-040927
Shi, P., Conitzer, V., & Guo, M. (2009). Prediction mechanisms that do not incentivize undesirable actions. In S. Leonardi (Ed.), Internet and Network Economies: Vol 5929, Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-642-10841-9_10
Slamka, C., Skiera, B., & Spann, M. (2012). Prediction Market performance and Market Liquidity: A comparison of Automated Market makers. IEEE Transactions on Engineering Management, 60(1), 169–185. https://doi.org/10.1109/tem.2012.2191618
Snowberg, E., Wolfers, J., & Zitzewitz, E. (2013). Prediction markets for economic forecasting. In Handbook of economic forecasting (pp. 657–687). https://doi.org/10.1016/b978-0-444-53683-9.00011-6
Soros, G. (2013). Fallibility, reflexivity, and the human uncertainty principle. Journal of Economic Methodology, 20(4), 309–329. https://doi.org/10.1080/1350178x.2013.859415
Soukhoroukova, A., Spann, M., & Skiera, B. (2011). Sourcing, filtering, and Evaluating new product ideas: An Empirical exploration of the performance of idea markets. Journal of Product Innovation Management, 29(1), 100–112. https://doi.org/10.1111/j.1540-5885.2011.00881.x
Spann, M., & Skiera, B. (2003). Internet-Based virtual stock markets for business forecasting. Management Science, 49(10), 1310–1326. https://doi.org/10.1287/mnsc.49.10.1310.17314
Spitler, E. J. (2024). Yelling “Fire” in the financial theater: bank runs in the social media age and the threat to financial stability. Carolina Law Scholarship Repository. https://scholarship.law.unc.edu/ncbi/vol28/iss1/5/
Stastny, B. J., & Lehner, P. E. (2018). Comparative evaluation of the forecast accuracy of analysis reports and a prediction market. Judgment and Decision Making, 13(2), 202–211. https://doi.org/10.1017/s1930297500007105
Strickland, B. R., & Crowne, D. P. (1962). Conformity under Conditions of Simulated Group Pressure as a Function of the Need for Social Approval. The Journal of Social Psychology, 58(1), 171–181. https://doi.org/10.1080/00224545.1962.9712366
Sumner, P., Vivian-Griffiths, S., Boivin, J., Williams, A., Venetis, C. A., Davies, A., Ogden, J., Whelan, L., Hughes, B., Dalton, B., Boy, F., & Chambers, C. D. (2014). The association between exaggeration in health related science news and academic press releases: retrospective observational study. BMJ, 349, 7015–7015. https://doi.org/10.1136/bmj.g7015
Tetlock, P. C. (2008). Liquidity and prediction market efficiency. SSRN Electronic Journal. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=929916
Thaler, R. H., & Ziemba, W. T. (1988). Anomalies: Parimutuel betting markets: racetracks and lotteries. The Journal of Economic Perspectives, 2(2), 161–174. https://doi.org/10.1257/jep.2.2.161
Van Bouwel, J. (2014). Towards Democratic Models of Science: Exploring the case of scientific Pluralism. Perspectives on Science, 23(2), 149–172. https://doi.org/10.1162/posc_a_00165
Webel, B. (2013). Troubled asset relief program (TARP): Implementation and status. Congressional Research Service. https://elischolar.library.yale.edu/ypfs-documents/8062/
Wolfers, J., & Zitzewitz, E. (2004). Prediction markets. The Journal of Economic Perspectives, 18(2), 107–126. https://doi.org/10.1257/0895330041371321
Zhang, Y., Chen, X., & Park, D. (2018). Formal specification of constant product (x*y= k) market maker model and implementation. Champaign, IL: Runtime Verification. https://safefiles.defiyield.info/safe/files/audit/pdf/Uniswap_V1.pdf
ดาวน์โหลด
เผยแพร่แล้ว
ฉบับ
ประเภทบทความ
สัญญาอนุญาต

อนุญาตภายใต้เงื่อนไข Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.