Building Envelope Improvement: Operational and Embodied Carbon Emission Reduction for Academic Buildings

Main Article Content

Tanapat Tongpaiboon
Sarin Pinich
Atch Sreshthaputra

Abstract

Building Climate impact includes CO2 emissions from operational energy use and embodied carbon emissions. High-performance building envelopes can significantly lower energy reduce HVAC loads by preventing heat transfer through the building envelope. Retrofitting building envelope components can lead to significant energy and carbon reduction. However, energy efficiency solutions often reduce operational energy demand by increasing the buildings' embodied energy, and greenhouse gas emissions involve increased material use. Therefore, this research is to evaluate the impact of energy retrofits on life cycle GHGs emissions across different envelope retrofit solutions including wall insulations, roof insulations, high performance glazing, and shading panels, which can offer a dual benefit to both aimed at reducing operational carbon emissions by lowering embodied carbon increasement for an academic building case study.  This study performed a method integrating Life Cycle Assessment (LCA) and Building Information Modeling (BIM) to extract the construction materials data to OneClickLCA database, utilizing in the plugin mainly on the service life cycle building for 60 years. After model calibration, the calibrated models were used for retrofit analysis to evaluate the energy reduction potential, which was performed using a calibrated model by EnergyPlus. The results evaluated 73 different configurations and classified each strategy using cellulose insulation, green reflective coated glass, and horizontal aluminum shading panels with a 90-cm-projection can achieve energy reduction up to 4.4%, 4.37%, and 2.67%, and have the lowest embodied emissions at 0.90%, 4.82% and 2.16%, respectively.

Article Details

Section
Articles

References

ดารณี จารีมิตร และณัฐฐาอัมพร อินทร์พรหม. (2015). ตัวแปรสำคัญสำหรับการจำลองพลังงานในอาคาร. Journal of Architectural/Planning Research and Studies, 12(1), 1–14. https://doi.org/10.56261/jars.v12i1.42171

ธัญธร ค้ำไพโรจน์. (2560). เครื่องมือเสริมบนแบบจําลองสารสนเทศที่ช่วยในการประเมินการปล่อยก๊าซเรือนกระจกตลอดวัฏจักรชีวิตของอาคาร ตั้งแต่ขั้นตอนการออกแบบขั้นต้น กรณีศึกษาอาคารพักอาศัย [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. https://cuir.car.chula.ac.th/handle/123456789/60180

พิพัฒน์ ไทยประดิษฐ์. (2560). การลดการปล่อยคาร์บอนจากอาคารโดยการประเมินวัฏจักรชีวิตของอาคาร[วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. https://cuir.car.chula.ac.th/handle/123456789/77062

มาริสา จิวเวชดำรงค์กุล. (2559). การเปรียบเทียบการใช้พลังงานของอาคารปฎิบัติการเคมีในมหาวิทยาลัย : กรณีศึกษา จุฬาลงกรณ์มหาวิทยาลัย [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. http://cuir.car.chula.ac.th/handle/123456789/55648

วัศพล ธีรวนพันธุ์. (2558). แนวทางการเพิ่มประสิทธิภาพการใช้พลังงานในอาคารเรียน คณะสถาปัตยกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย [วิทยานิพนธ์ ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. https://cuir.car.chula.ac.th/handle/123456789/51027

องค์การบริหารจัดการก๊าซเรือนกระจก. (2565). ค่าการปล่อยก๊าซเรือนกระจกจากการผลิต/การใช้พลังงานไฟฟ้า (Emission factor) สำหรับโครงการและกิจกรรมลดก๊าซเรือนกระจก. https://ghgreduction.tgo.or.th/th/download-tver/120-tver-gwp-emission-factor

Abbasi, S., & Noorzai, E. (2021, January 25). The BIM-based multi-optimization approach in order to determine the trade-off between embodied and operation energy focused on renewable energy use. Journal of Cleaner Production, 281, 125359. https://doi.org/10.1016/j.jclepro.2020.125359

Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., & O'Reilly, K. (2011, March). Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction, 20(2), 189–195. https://doi.org/10.1016/j.autcon.2010.09.016

Azhar, S. (2011). Building Information Modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership & Management in Engineering, 11(3), 241-252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127

BRE Global. (2021). Product category rules for type III environmental product declaration of construction products to EN 15804:2012+A1:2013. One Click LCA. https://oneclicklca.com

Buyle, M., Braet, J., & Audenaert, A. (2013, October). Life cycle assessment in the construction sector: A review. Renewable and Sustainable Energy Reviews, 26, 379–388. https://doi.org/10.1016/j.rser.2013.05.001

Cavalliere, C., Habert, G., Dell'Osso, G. R., & Hollberg, A. (2019, February 20). Continuous BIM-based assessment of embodied environmental impacts throughout the design process. Journal of Cleaner Production, 211, 941–952. https://doi.org/10.1016/j.jclepro.2018.11.247

Coakley, D., Raftery, P., & Keane, M. (2014, September). A review of methods to match building energy, simulation models to measure data. Renewable and Sustainable Energy Reviews, 37, 123–141. https://doi.org/10.1016/j.rser.2014.05.007

CRREM. (2023). From global emission budgets to decarbonization pathways at property level. https://www.crrem.eu/wp-content/uploads/2023/01/CRREM-downscaling- documentation-and assessment-methodology_Update-V2_V1.0-11-01-23

Dokhanian, F., Mohajerani, M., Estaji, H., & Nikravan, M. (2023, November 20). Shading design optimization in a semi-arid region: Considering energy consumption, greenhouse gas emissions, and cost. Journal of Cleaner Production, 428, 139293. https://doi.org/10.1016/j.jclepro.2023.139293

Eleftheriadis, S., Mumovic, D., & Greening, P. (2017, January). Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renewable and Sustainable Energy Reviews, 67, 811-825. https://doi.org/10.1016/j.rser.2016.09.028

Gu, Y., Tian, W., Song, C., & Chong, A. (2023, October 1). Quantifying the effects of different data streams on the calibration of building energy simulation. Energy and Buildings, 296, 113352. https://doi.org/10.1016/j.enbuild.2023.113352

Hill, C., Norton, A., & Dibdiakova, J. (2018, March 1). A comparison of the environmental impacts of different categories of insulation materials. Energy and Buildings, 162, 1220. https://doi.org/10.1016/j.enbuild.2017.12.009

Jrade, A., & Jalaei, F. (2013, April). Integrating building information modelling with sustainability to design building projects at the conceptual stage. Architecture and Human Behavior, 6, 429-444. https://doi.org/10.1007/s12273-013-0120-0

Karaguzel, O. T., Zhang, R., & Lam, K. P. (2014, April). Coupling of whole-building energy simulation and multi-dimensional numerical optimization for minimizing the life cycle costs of office buildings. Building Simulation, 7, 111–121. https://doi.org/10.1007/s12273-013-0128-5

Kounni, A., Outzourhit, A., Mastouri, H., & Radoine, H. (2023). Building energy model automated calibration using Pymoo. Energy and Buildings, 298, 113524. https://doi.org/10.1016/j.enbuild.2023.113524

Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018, April). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228-236. https://doi.org/10.1016/j.buildenv.2018.02.016

Mowafy, N., Zayat, M. E., & Marzouk, M. (2023). Parametric BIM-based life cycle assessment framework for optimal sustainable design. Journal of Building Engineering, 75, 106898.https://doi.org/10.1016/j.jobe.2023.106898Mukkavaara, J., & Shadram, F. (2021, December 15). An integrated optimization and sensitivity analysis approach to support the life cycle energy trade-off in building design. Energy and Buildings, 111529. https://doi.org/10.1016/j.enbuild.2021.111529

Obrecht, T. P., Röck, M., Hoxha, E., & Passer, A. (2020, July). BIM and LCA integration: BIM and LCA integration: A systematic literature review. Sustainability, 12(14), 5534. https://doi.org/10.3390/su12145534

Porsani, G. B., Casquero-Modrego, N., Trueba, J. B. E., & Bandera, C. F. (2023, October 1). Empirical evaluation of EnergyPlus infiltration model for a case study in a high-rise residential building. Energy and Buildings, 296, 113322. https://doi.org/10.1016/j.enbuild.2023.113322

Rezaei, F., Bulle, C., & Lesage, P. (2019, April 15). Integrating building information modeling and life cycle assessment in the early and detailed building design stages. Building and Environment, 153, 158-167. https://doi.org/10.1016/j.buildenv.2019.01.034

SBTi. (2024). 1.5C Pathways for the global buildings sector’s embodied emissions: Development description. https://2050-materials.com/blog/breaking-down-sbti- carbon

Soust-Verdaguer, B., Llatas, C., García-Martínez, A. (2017, February 1). Critical review of BIM-based LCA method to buildings. Energy and Buildings, 136, 110–120. https://doi.org/10.1016/j.enbuild.2016.12.009

Soust-Verdaguer, B., Llatas C., & Moya, L. (2020, December 20). Comparative BIM-based life cycle assessment of Uruguayan timber and concrete-masonry single-family houses in design stage. Journal of Cleaner Production, 277, 121958. https://doi.org/10.1016/j.jclepro.2020.121958

Tam, V. W. Y., Zhou, Y., Shen, L., & Le, K. N. (2023, January 20). Optimal BIM and LCA integration approach for embodied environmental impact assessment. Journal of Cleaner Production, 385, 135605. https://doi.org/10.1016/j.jclepro.2022.135605

Teng, Y., Xu, J., Pan, W., & Zhang, Y. (2022, August 1). A systematic review of the integration of building information modeling into life cycle assessment. Building and Environment, 221, 109260. https://doi.org/10.1016/j.buildenv.2022.109260

Tiseo, I. (2025). Forecasted CO₂ intensity of electricity generation worldwide from 2000 to 2050, by region (in grams of carbon dioxide per kilowatt hour). https://www.statista.com/statistics/1257765/global-emission-intensity-electricity-generation-region/

U.S. Department of Energy. (2012). Annual energy outlook. US Energy Information Administration (EIA). https://www.eia.gov