Evaluation of the Effectiveness of Thailand’s Building Energy Consumption Criteria under Climate Change Scenario

Main Article Content

Peerapat Harileartrat
Atch Sreshthaputra
Sarin Pinich

Abstract

This research aimed to evaluate the efficiency of energy consumption criteria in buildings, which were used in the 20-year energy efficiency plan 2011–2030 (EEP 2011) under climate change, using an energy simulation method. The assessment was conducted by analyzing energy consumption trends for cooling and total energy consumption and comparing carbon emissions from building use according to the energy consumption criteria with the in–use operational emissions pathway according to the SBTi taxonomy, with office buildings as a case study.


The research results showed that the energy consumption criteria reduced the total energy consumption of buildings by 24.52%, 30.69%, 50.76%, and 65% in 2020, 2030, 2040, and 2050, respectively, compared to the total energy consumption in 2010, but it still could not make the amount of carbon emissions from building use comply with the international carbon emission guidelines. Therefore, it was necessary to compensate for energy use from other sources, such as installing solar cells. The research found that if solar PV offset energy consumption, it required 9.24 MW, 9.44 MW, 6.92 MW, and 5.13 MW installations in 2020, 2030, 2040, and 2050, respectively, to meet the emissions pathway.

Article Details

Section
Articles

References

กระทรวงพลังงาน. (2554). แผนอนุรักษ์พลังงาน พ.ศ. 2554–2573. https://infocenter.oic.go.th/FILEWEB/CABINFOCENTER50/DRAWER097/GENERAL/DATA0000/00000016.PDF

ชนิกานต์ ยิ้มประยูร. (2016). บทความปริทรรศน์ : อาคารใช้พลังงานเป็นศูนย์. Journal of Architectural/Planning Research and Studies, 13(2). 1–30. https://www.researchgate.net/publication/367582974_Zero_Energy_Building/fulltext/63d93a2f62d2a24f92e25aff/Zero-Energy-Building.pdf

ณัฏฐา ตระกูลไทย. (2558). ผลกระทบจากภาวะอากาศเปลี่ยนแปลงต่อการใช้พลังงานอาคารในเขตร้อนชื้น [วิทยานิพนธ์มหาบัณฑิต ไม่ได้ตีพิมพ์]. จุฬาลงกรณ์มหาวิทยาลัย.

อภิญญา เวชกามา, อรรจน์ เศรษฐบุตร, และสริน พินิจ. (2566). ผลกระทบของภาวะอากาศเปลี่ยนแปลงในอนาคตต่อการออกแบบพลังงานหมุนเวียนของอาคารคอนโดมิเนียมพักอาศัยปล่อยคาร์บอนสุทธิเป็นศูนย์. สาระศาสตร์, 6(2), 211–235.

Albatayneh, A., Albadaineh, R., & Juaidi, A. (2024, December). Climate change impacts on residential energy usage in hot semi-arid climate: Jordan case study. Energy for Sustainable Development, 83, 101576. https://doi.org/10.1016/j.esd.2024.101576

Bazazzadeh, H., Pilechiha, P., Nadolny, A., Mahdavinejad, M., & Hashemi safaei, S. S. (2021, July). The impact assessment of climate change on building energy consumption in Poland. Energies, 14(14), 4084. https://doi.org/10.3390/en14144084

Belcher, S., Hacker, J., & Powell, D. (2015). Construction design weather data for future climate. Building Services Engineering Research and Technology, 26(1), 49–61.

BREEAM. (2025). Weather files–2020s, 2030s, and 2050s - KBCN0842. https://kb.breeam.com/wp-content/plugins/breeamkb-pdf/pdf/?c=642

CBRE. (2024). Property search. https://property.cbre.co.th/property-search

CEIC. (2025). Thailand Carbon Dioxide emission per electricity generation. https://www.ceicdata.com/en/thailand/carbon-dioxide-emissions-statistics/carbon-dioxide-emission-per-electricity-generation

CRREM. (2022). From global emission budgets to decarbonization pathways at property level. https://www.crrem.eu/wp-content/uploads/2023/01/CRREM-downscaling-documentation-and-assessment-methodology_Update-V2_V1.0-11-01-23.pdf

DesignBuilder. (2025). About DesignBuilder. https://designbuilder.co.uk/about-us

Enerdata. (2025). CO2 intensity of electricity generation. https://eneroutlook.enerdata.net/forecast-world-co2-intensity-of-electricity-generation.html

Hengrasmee, N. & Chansomsak, S. (2019). Improvability of Thai’s building energy code via lighting power density requirements. Journal of Architectural/Planning Research and Studies, 16(2). 199–208. https://doi.org/10.56261/jars.v16i2.162993

IPCC. (2022). AR6-emissions scenarios. https://www.ipcc.ch/site/assets/uploads/2018/03/emissions_scenarios-1.pdf

IPCC. (2000). Special report emissions scenario. https://www.ipcc.ch/site/assets/uploads/2018/03/sres-en.pdf

Jentsch, M. F., James, P. A. B., Bourikas, L., & Bahaj, A. S. (2013, July). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 55, 514–524. https://doi.org/10.1016/j.renene.2012.12.049

JLL. (2024). Thailand Property Search. https://property.jll.co.th/en-th

Leach, M. (2010). Technical support document: Strategies for 50% energy savings in large office buildings. NREL. https://research-hub.nrel.gov/en/persons/matt-leach

Office Space Bangkok. (2024). Property search. https://officespacebangkok.com/

Pantong, K., Chirarattananon, S., & Chaiwiwatworakul, P. (2011). Development of energy conservation programs for commercial buildings based on assessed energy saving potentials. Energy Procedia, 9, 70–83. https://doi.org/10.1016/j.egypro.2011.09.009

PennState. (2025). Temperature. https://www.e-education.psu.edu/earth103/node/1015

SBTi. (2024). Buildings sector science-based targets explanatory document version 1.0. https://sciencebasedtargets.org/resources/files/SBTi-Buildings-Sector-Explanatory-Document.pdf

United Nations. (2021). COP26: Together for our planet. https://www.un.org/en/climatechange/cop26

World Economic Forum. (2022). This is the next hurdle in the construction industry's race to net-zero. https://www.weforum.org/stories/2022/09/construction-industry-zero-emissions/#:~:text=Embodied%20carbon:%20construction%20industry's%20biggest,commitments%20and%20take%20immediate%20action

Xiong, J., Guo, S., Wu, Y., Yan, D., Xiao, C., & Lu, X. (2023, April). Predicting the response of heating and cooling demands of residential buildings with various thermal performances in China to climate change. Energy, 269, 126789. https://doi.org/10.1016/j.energy.2023.126789