A Study on the Efficiency of Architectural Acoustic Simulation Using 3D Models Created from Point Cloud Data
Main Article Content
Abstract
Architectural acoustics affect building users, especially in spaces like auditoriums. While tools exist for acoustic simulation, creating 3D models for buildings without them requires significant labor and time for surveying. With the growing use of point cloud technology in architecture and construction, it has become essential for capturing detailed information on existing buildings and renovations.
Recognizing the potential of point cloud data, this study explores its application in generating 3D models for architectural acoustic simulations and evaluates the effectiveness of this approach compared to traditional 3D models created manually from field measurements. Two methods are proposed for generating 3D models from point cloud data: a bounding box-based modeling approach using Rhinoceros Grasshopper and a Voxel-based modeling approach using the Volvox plugin. The 3D models were used to simulate acoustic performance under two different sets of material absorption coefficients.
The study found that both point cloud-based models successfully simulated four key acoustic parameters: Reverberation Time (RT60), Early Decay Time (EDT), Clarity (C80), and Speech Transmission Index (STI) across six frequency bands ranging from 125 Hz to 4000 Hz. The results followed the same trend and exhibited values similar to those obtained from the manually created 3D models. Among the two point cloud-based methods, the bounding box approach produced simulation results that more closely aligned with the manual models than the Voxel-based approach. This finding highlights the potential of these methods for further study and development in architectural acoustics.
Article Details
References
กรวิชญ์ เปลี่ยนสมัย. (2560). การสร้างแบบจำลองพาราเมตริกจากข้อมูลเมฆจุด 3 มิติจากภาพถ่ายเพื่อการสร้างแบบจำลองสารสนเทศอาคาร [วิทยานิพนธ์ปริญญามหาบัณฑิต, มหาวิทยาลัยธรรมศาสตร์]. TU Digital Collections. https://doi.org/10.14457/TU.the.2017.895
สุรกฤษฏิ์ ฮั่นไพศาล. (2562). การใช้ขั้นตอนวิธีเชิงพันธุกรรมแบบหลายวัตถุประสงค์ในการออกแบบผนังควบคุมเสียงแบบปรับเปลี่ยนได้เพื่อตอบสนองกิจกรรมในพื้นที่อเนกประสงค์ [วิทยานิพนธ์ปริญญามหาบัณฑิต, มหาวิทยาลัยธรรมศาสตร์]. TU Digital Collections. https://doi.org/10.14457/TU.the.2019.1558
เอสซีจี. (2561). วัสดุอะคูสติก. https://storage.googleapis.com/scgsmartliving/download/scg-acoustic-product-catalog.pdf
Acoustic Materials & Technologies Ltd. (2025). Sound absorption coefficients table. https://www.acoustic.ua/st/web_absorption_data_eng.pdf
Association of Australasian Acoustical Consultants. (2020). Guideline for educational facilities acoustics (Version 2.0). The Association.
Autodesk. (2025, January 8). 3D laser scanning solutions. https://www.autodesk.com/solutions/3d-laser-scanning
Autodesk. (2025, January 8). Point clouds solutions. https://www.autodesk.com/solutions/point-clouds
Bergerot, L., Blaise, J. Y., Dudek, I., Pamart, A., Aramaki, M., Fargeot, S., Kronland-Martinet, R., Vidal, A., & Ystad, S. (2022). Combined web-based visualisation of 3D point clouds and acoustic descriptors: An interdisciplinary challenge. Heritage, 5(4), 3819–3845. https://doi.org/10.3390/heritage5040197
Bradley, J. S. (2011). Review of objective room acoustics measures and future needs. Applied Acoustics, 72(10), 713–720. https://doi.org/10.1016/j.apacoust.2011.04.004
Cabrera, D. (2007). Acoustic clarity and auditory room size perception. In Proceedings of the 14th International Congress on Sound and Vibration 2007, ICSV 2007 (Vol. 3, pp. 1830–1837). Cairns, Australia.
Goldstein, R., Breslav, S., & Khan, A. (2014). Towards voxel-based algorithms for building performance simulation. In Proceedings of the IBPSA-Canada eSim Conference. Ottawa, Canada.
GP Radar. (2025, January 6). What is a point cloud? https://www.gp-radar.com/article/what-is-a-point-cloud
Kob, M., Behler, G., Kamprolf, A., Goldschmid, O., & Neuschaefer-Rube, C. (2008). Experimental investigations of the influence of room acoustics on the teacher’s voice. Acoustical Science and Technology, 29(1), 86–94. https://doi.org/10.1250/ast.29.86
Lachhwani, N., & Devi, T. S. (2023, May–June). Auditorium acoustics and architectural design. International Journal for Modern Research (IJFMR), 5(3),1–9. https://doi.org/10.36948/ijfmr.2023.v05i03.3891
Ma, K. W., Wong, H. M., & Mak, C. M. (2018). A systematic review of human perceptual dimensions of sound: Meta-analysis of semantic differential method applications to indoor and outdoor sounds. Building and Environment, 133, 123–150. https://doi.org/10.1016/j.buildenv.2018.02.021
Mak, C. M. (2015). Special issues on building acoustics and noise control. Building and Environment, 94, 751. https://doi.org/10.1016/j.buildenv.2015.10.011
Markovic, M., Olesen, S. K., & Hammershøi, D. (2013). Three-dimensional point-cloud room model for room acoustics simulations. Proceedings of Meetings on Acoustics, 19(1), 015122. https://doi.org/10.1121/1.4800237
O’Donnell, J., Truong-Hong, L., Boyle, N., Corry, E., Cao, J., & Laefer, D. F. (2019). LiDAR point-cloud mapping of building façades for building energy performance simulation. Automation in Construction, 107, 102905. https://doi.org/10.1016/j.autcon.2019.102905
Oniku, S., & Bello, T. (2012). A review of acoustic consideration in public and multifunctional building design. FUTY Journal of the Environment, 6(2). https://doi.org/10.4314/fje.v6i2.9
Rashdi, R., Martínez-Sánchez, J., Arias, P., & Qiu, Z. (2022). Scanning technologies to building information modelling: A review. Infrastructures, 7(4), 1–29. https://doi.org/10.3390/infrastructures7040049
Shanbari, H. A., Blinn, N. M., & Issa, R. R. (2016). Laser scanning technology and BIM in construction management education. Journal of Information Technology in Construction, 21, 204–217.
Wu, C., & Clayton, M. J. (2013, October). BIM based acoustic simulation framework. In Proceedings of the 30th International Conference of CIB W78 (pp.99–108). Beijing, China.
Xu, Y., Tong, X., & Stilla, U. (2021, February). Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry. Automation in Construction, 126, 103675. https://doi.org/10.1016/j.autcon.2021.103675