Long-term Carbon Emissions Prediction from the Impact of Electricity Mix and Climate Change Using Dynamic Life Cycle Assessment

Main Article Content

Akdanai Rothakit
Sarin Pinich
Atch Sreshthaputra

Abstract

Given the challenges posed by climate change, it is imperative to establish targets for the emissions reduction in construction sector. Life cycle assessment (LCA) is a framework for evaluating environmental impacts. However, the conventional (static) LCA assumes constant values through life cycles, leading to discrepancies for buildings with long service lives. This leads to the concept of dynamic life cycle assessment, which considers time-varying factors.


This study compares greenhouse gas emissions from static and dynamic LCA using single-detached houses in Bangkok as a case study. This comparison considers two time-varying factors: future electricity mix and future weather data. Additionally, the study evaluates the impact of greenhouse gas mitigation measures, specifically the thermal insulation performance of building envelopes.


Using EnergyPlus for an energy simulation, the static LCA estimated emissions at 1,741 kgCO2e/m². In contrast, dynamic LCA, which accounts for future scenarios, projected 1,293 kgCO2e/m² (a 25.67% reduction) under a business-as-usual scenario and 836 kgCO2e/m² (a 51.99% reduction) under Thailand’s carbon neutrality policies. This results emphasize the role of effective policies in lowering emissions. Furthermore, operational carbon emissions, which previously accounted for up to 80.1% in static assessments, was found to decrease to 58.5%–73.2% in dynamic assessments. Additionally, operational carbon emissions, previously up to 80.1% in static assessments, decreased to 58.5%–73.2% in dynamic assessments, influencing optimal building envelope design. Notably, optimal thickness of insulation was lower in dynamic assessments, with rockwool thickness reduced from 150 mm to 100 mm and fiberglass from 150 mm to 75 mm under policies scenarios.

Article Details

Section
Articles

References

กระทรวงพลังงาน. (2564). ประกาศกระทรวงพลังงาน เรื่อง หลักเกณฑ์ วิธีการคำนวณ และการรับรองผลการตรวจประเมินการออกแบบอาคารเพื่อการอนุรักษ์พลังงานแต่ละระบบ การใช้พลังงานโดยรวมของอาคาร และการใช้พลังงานหมุนเวียนในระบบต่างๆ ของอาคาร. กระทรวง.

ชนิกานต์ ยิ้มประยูร, รัตนาวรรณ มั่งคั่ง, ภัทรนันท์ ทักขนนท, และสิงห์ อินทรชูโต. (2564). เกณฑ์ประเมินและให้ฉลากแบบบ้านประหยัดพลังงานและเป็นมิตรกับสิ่งแวดล้อมโดยอิงการจำลองพลังงานและการประเมินวัฏจักรชีวิต. Journal of Architectural/Planning Research and Studies (JARS), 19(1), 179–200. https://doi.org/10.56261/jars.v19i1.243880

ณัฏฐา ตระกูลไทย. (2558). ผลกระทบจากภาวะอากาศเปลี่ยนแปลงต่อการใช้พลังงานอาคารในเขตร้อนชื้น [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. DOI: 10.58837/CHULA.THE.2015.1685

ธันญวีร์ มีสรรพวงศ์. (2561). การออกแบบบ้านสมัยใหม่ โดยประยุกต์ภูมิปัญญาในการระบายอากาศของเรือนไทย [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. DOI: 10.58837/CHULA.THE.2018.1387

อภิญญา เวชกามา. (2565). ผลกระทบจากภาวะอากาศเปลี่ยนแปลงกับการออกแบบพลังงานหมุนเวียน เพื่อไปสู่อาคารพักอาศัยปล่อยคาร์บอนสุทธิเป็นศูนย์ [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. CUIR. DOI:10.58837/CHULA.THE.2022.951

Belcher, S. E., Hacker, J., & Powell, D. S. (2005, February). Constructing design weather data for future climates. Building Services Engineering Research and Technology, 26(1), 49-61. https://doi.org/10.1191/0143624405bt112oa

Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, Steven J., Snyder, A., & Wise, M. (2019, February). GCAM v5.1: Representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development, 12(2), 677-698. https://doi.org/10.5194/gmd-12-677-2019

CEIC. (2021). Thailand TH: Electric power transmission and distribution losses: % of output. https://www.ceicdata.com/en/thailand/energy-production-and-consumption/th-electric-power-transmission-and-distribution-losses--of-output

Cellura, M., Guarino, F., Longo, S., & Tumminia, G. (2018, August). Climate change and the building sector: Modelling and energy implications to an office building in southern Europe. Energy for Sustainable Development, 45, 46–65. https://doi.org/10.1016/j.esd.2018.05.001

CRREM. (2023). CRREM risk assessment reference guide - User manual for the CRREM risk assessment tool V2. https://www.crrem.eu/wp-content/uploads/2023/04/CRREM-Risk-Assessment-Reference-Guide-V2_20_03_2023.pdf

Fnais, A., Rezgui, Y., Petri, I., Beach, T., Yeung, J., Ghoroghi, A., & Kubicki, S. (2022, May). The application of life cycle assessment in buildings: Challenges, and directions for future research. The International Journal of Life Cycle Assessment, 27(6), 627–654. https://doi.org/10.1007/s11367-022-02058-5

IEA. (2022). Energy system of Thailand. https://www.iea.org/countries/thailand

IPCC. (n.d.). HadCM3 climate scenario data. https://www.ipcc- data.org/sim/gcm_clim/SRES_TAR/hadcm3_ download.html

Jareemit, D., Inprom, N., & Sukseeda, J. (2016). Uncertainty distributions in architectural design parameters for detached houses located In Bangkok Nneighborhoods. ASHRAE - IBPSA-USA SimBuild 2016 Building Performance Modeling Conference Salt Lake City, Utah.

Jentsch, M. F., Bahaj, A. S., & James, P. A. B. (2008, December). Climate change future proofing of buildings—Generation and assessment of building simulation weather files. Energy and Buildings, 40(12), 2148–2168. https://doi.org/10.1016/j.enbuild.2008.06.005

Jentsch, M. F., James, P. A. B., Bourikas, L., & Bahaj, A. S. (2013, July). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 55, 514-524. https://doi.org/10.1016/j.renene.2012.12.049

Li, C., Pan, Y., Liu, Z., Liang, Y., Yuan, X., Huang, Z., & Zhou, N. (2024, November 15). Optimal design of building envelope towards life cycle performance: Impact of considering dynamic grid emission factors. Energy and Buildings, 323, 114770. https://doi.org/10.1016/j.enbuild.2024.114770

Nwodo, M. N., & Anumba, C. J. (2019, July). A review of life cycle assessment of buildings using a systematic approach. Building and Environment, 162, 106290. https://doi.org/10.1016/j.buildenv.2019.106290

OneClickLCA. (2021). Average material quantities. https://oneclicklca.zendesk.com/hc/en-us/articles/360015033400-Average-Material-Quantities

Pei, L., Schalbart, P., & Peuportier, B. (2022, July 15). Life cycle assessment of a residential building in China accounting for spatial and temporal variations of electricity production. Journal of Building Engineering, 52, 104461. https://doi.org/10.1016/j.jobe.2022.104461

Phillips, R., Fannon, D., & J. Eckelman, M. (2022, February 1). Dynamic modeling of future climatic and technological trends on life cycle global warming impacts and occupant satisfaction in US office buildings. Energy and Buildings, 256, 111705. https://doi.org/10.1016/j.enbuild.2021.111705

Rodrigues, C., Rodrigues, E., S. Fernandes, M., & Tadeu, S. (2024, October 15). Prospective life cycle approach to buildings' adaptation for future climate and decarbonization scenarios. Applied Energy, 372, 123867. https://doi.org/10.1016/j.apenergy.2024.123867

Roux, C., Schalbart, P., Assoumou, E., & Peuportier, B. (2016, December 15). Integrating climate change and energy mix scenarios in LCA of buildings and districts. Applied Energy, 184, 619–629. https://doi.org/10.1016/j.apenergy.2016.10.043

Sadovskaia, K., Bogdanov, D., Honkapuro, S., & Breyer, C. (2019, May). Power transmission and distribution losses – A model based on available empirical data and future trends for all countries globally. International Journal of Electrical Power & Energy Systems, 107(2), 98-109. https://doi.org/https://doi.org/10.1016/j.ijepes.2018.11.012

Schlömer, S., Bruckner, T., Fulton, L., Hertwich, E., McKinnon, A., Perczyk, J., Roy, D., Schaeffer, R., Sims, R., Smith, P., & Wiser, R. (2014). Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change (pp. 1329-1356). Cambridge University Press.

Shanbhag, S. S., & Dixit, M. K. (2024, September 15). A review of evolving climate and energy economy trends to enhance the dynamic life cycle assessment of buildings. Sustainable Cities and Society, 111(11), 105560. https://doi.org/10.1016/j.scs.2024.105560

Su, S., Li, X., & Zhu, Y. (2019, July). Dynamic assessment elements and their prospective solutions in dynamic life cycle assessment of buildings. Building and Environment, 158, 248–259. https://doi.org/10.1016/j.buildenv.2019.05.008

Su, S., Li, X., Zhu, Y., & Lin, B. (2017, August 15). Dynamic LCA framework for environmental impact assessment of buildings. Energy and Buildings, 149, 310-320. https://doi.org/10.1016/j.enbuild.2017.05.042

Su, X., Huang, Y., Chen, C., Xu, Z., Tian, S., & Peng, L. (2023, September). A dynamic life cycle assessment model for long-term carbon emissions prediction of buildings: A passive building as case study. Sustainable Cities and Society, 96, 104636. https://doi.org/10.1016/j.scs.2023.104636

UNEP. (2020). 2020 global status report for buildings and construction sector. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf

UNFCCC. (2011). Definitions of climate change - Fact sheeet: Climate change science the status of climate change science today. https://www.uncclearn.org/wp- content/uploads/library/unfccc01.pdf

United Nations. (2021). COP26: Together for our planet. https://www.un.org/en/climatechange/cop26

Van de moortel, E., Allacker, K., De Troyer, F., Schoofs, E., & Stijnen, L. (2022). Dynamic versus static life cycle assessment of energy renovation for residential buildings. Sustainability, 14(11), 6838. https://doi.org/10.3390/su14116838

Waite, M., Cohen, E., Torbey, H., Piccirilli, M., Tian, Y., & Modi, V. (2017, May 15). Global trends in urban electricity demands for cooling and heating. Energy, 127(6), 786–802. https://doi.org/10.1016/j.energy.2017.03.095

Waite, T., Pradhan, B. B., Winyuchakrit, P., Khan, Z., Weber, M., Pressburger, L., Chaichaloempreecha, A., Rajbhandari, S., Pita, P., Westphal, M. I., Jonvisait, A., Jareemit, D., Limmeechokchai, B., & Evans, M. (2024, February 9). Stakeholder-driven carbon neutral pathways for Thailand and Bangkok: Integrated assessment modeling to inform multilevel climate governance. Frontiers in Energy Research, 12. https://doi.org/10.3389/fenrg.2024.1335290