Development and Performance Evaluation of Recycled Textile Composites for Creative Architecture
Main Article Content
Abstract
This study evaluates the potential of epoxy–resin composites reinforced with recycled textiles as architectural finishing materials, with the aim of identifying suitable resin-to-textile ratios and fabric lay-ups. Four resin-to-textile mass ratios were investigated—1:0.5, 1:0.4, 1:0.3, and 1:0.2—together with three reinforcement configurations: 1) cotton textile fibers (EC), 2) polyester fabric sheets (EP), and 3) a hybrid of both fibers and sheets (ECP), stacked in discrete layers. Physical properties (surface characteristics, density, water absorption, and thickness swelling) and mechanical performance (flexural strength) were determined and benchmarked against the Thai Industrial Standard for plywood products (TIS 876-2565).
The results show that EP panels exhibited a smoother and glossier surface than EC panels, which displayed a rougher texture with visibly alternating fibers. All three lay-up schemes afforded wide aesthetic latitude for color and pattern design. The EP composite achieved the highest flexural strength (42.49 MPa), relatively high density (865.54–1075.51 kg/m³), low water absorption (0.38–4.87%), and the lowest thickness swelling (0.02–0.08%), followed by the EC and ECP composites, respectively. When compared with TIS 876-2565, the optimal resin-to-textile ratio was 1:0.2, yielding flexural strength exceeding the plywood standard along with favorable physical properties. These findings indicate that the developed composites are promising for advancement into decorative wall panels and furniture components.
In summary, epoxy–resin composites incorporating recycled textiles offer a compelling alternative for architectural finishes that adds value to textile waste and mitigates solid-waste burdens, while supporting upcycling practices and the transition toward a circular economy.
Article Details
References
ทศพร ชวัจน์ปันเจริญ. (2555). การพัฒนาฉนวนกันความร้อนจากเส้นใยผ้ายีนส์รีไซเคิล [วิทยานิพนธ์ปริญญามหาบัณฑิต, มหาวิทยาลัยศิลปากร]. Silpakorn University Repository (SURE). https://sure.su.ac.th/xmlui/handle/123456789/6099
นนทลี อิ่งแก้ว. (2560). การพัฒนาวัสดุกันกระสุนจากวัสดุผสมอีพอกซีเสริมแรงด้วยเส้นใยชานอ้อย [วิทยานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย]. Chulalongkorn University Theses and Dissertations (Chula ETD). https://digital.car.chula.ac.th/chulaetd/1815/ สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. (2565). มาตรฐานผลิตภัณฑ์อุตสาหกรรมแผ่นชิ้นไม้อัดชนิดอัดราบ. มอก. 876-2565. https://a.tisi.go.th/t/?n=6877
Abrishami, S., Shirali, A., Sharples, N., Kartal, G. E., Macintyre, L., & Doustdar, O. (2024). Textile recycling and recovery: An eco-friendly perspective on textile and garment industries challenges. Textile Research Journal, 94(23-24), 2815-2834. https://doi.org/10.1177/00405175241247806
Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2018). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 47(8), 2153-2183.
Amaraweera, S. M., Gunathilake, C., Gunawardene, O. H. P., Fernando, N. M. L., Wanninayaka, D. B., Dassanayake, R. S., Rajapaksha, S. M., Manamperi, A., Fernando, C. A. N., Kulatunga, A. K., & Manipura, A. (2021). Development of starch-based materials using current modification techniques and their applications: A review. Molecules, 26(22).
Apparel, S. o. M. (2023, December 11). 10 scary statistics about fast fashion & the environment. https://stateofmatterapparel.com/blogs/som-blog/10-scary-statistics-about-fast-fashion-the-environment
Ayed, R., Borri, E., Zsembinszki, G., Bouadila, S., Cabeza, L. F., & Lazaar, M. (2024). Use of textile fiber waste to improve the thermal and mechanical performance of cement-based mortar. In V. Ungureanu, L Bragança, C. Baniotopoulos, K. M. Abdalla (Eds.), 4th International Conference "Coordinating Engineering for Sustainability and Resilience" & Midterm Conference of CircularB “Implementation of Circular Economy in the Built Environment”(pp. 273-281). Timișoara, Romania.
Bachchan, A. A., Das, P. P., & Chaudhary, V. (2022). Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. Materials Today: Proceedings, 49, 3403-3408.
Capitalread. (2023, September 7). Fabric specialist. https://capitalread.co/moreloop/
Dallaev, R., Pisarenko, T., Papež, N., Sadovský, P., & Holcman, V. (2023). A brief overview on epoxies in electronics: Properties, applications, and modifications. Polymers (Basel), 15(19). https://doi.org/10.3390/polym15193964
Dev, B., Rahman, M. A., Tazrin, T., Islam, M. S., Datta, A., & Rahman, M. Z. (2024). Investigation of mechanical properties of nonwoven recycled cotton/PET fiber‐reinforced polyester hybrid composites. Macromolecular Materials and Engineering, 309(6), 2400020.
Elsada, R., El-Wazery, M., & EL-Kelityb, A. (2020). Effect of water absorption on the tensile characteristics of natural/synthetic fabrics reinforced hybrid composites. Elastic, 1500, 700.
Fekiač, J. J., Krbata, M., Kohutiar, M., Janík, R., Kakošová, L., Breznická, A., Eckert, M., & Mikuš, P. (2025). Comprehensive review: Optimization of epoxy composites, mechanical properties, & technological trends. Polymers, 17(3).
Hao, X., Zhou, H., Mu, B., Chen, L., Guo, Q., Yi, X., Sun, L., Wang, Q., & Ou, R. (2020). Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites. Composites Part B: Engineering, 185, 107778. https://doi.org/https://doi.org/10.1016/j.compositesb.2020.107778
Haq, U. N., & Alam, S. M. R. (2023). Implementing circular economy principles in the apparel production process: Reusing pre-consumer waste for sustainability of environment and economy. Cleaner Waste Systems, 6, 100108. https://doi.org/https://doi.org/10.1016/j.clwas.2023.100108
Hassan, T., Jamshaid, H., Mishra, R., Khan, M. Q., Petru, M., Novak, J., Choteborsky, R., & Hromasova, M. (2020). Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers, 12(3).
Heudorfer, K., Bauer, J., Caydamli, Y., Gompf, B., Take, J., Buchmeiser, M. R., & Middendorf, P. (2023). Method of manufacturing structural, optically transparent Glass Fiber-Reinforced Polymers (tGFRP) using infusion techniques with epoxy resin systems and e-glass fabrics. Polymers, 15(9).
Jawaid, M., Alothman, O. Y., Paridah, M. T., & Abdul Khalil, H. P. S. (2013). Effect of fiber treatment on dimensional stability and chemical resistance properties of hybrid composites. International Journal of Polymer Analysis and Characterization, 18(8), 608-616. https://doi.org/10.1080/1023666X.2013.842332
Kagitci, E. (2020). Upcycling textile waste from the fashion industry as a sustainable building material for architectural design [Unpublished master thesis]. Politecnico Milano.
Kim, D. K., Choi, Y. H., Kim, K. W., & Kim, B. J. (2023). Transparent glass-fiber-reinforced epoxy composites and their optical characteristics. Composites Science and Technology, 232, 109848. https://doi.org/https://doi.org/10.1016/j.compscitech.2022.109848
Knapčíková, L., & Behúnová, A. (2020). Research of casting moulding of epoxy resin composites reinforced with high-strength fibres during the manufacturing operations. TEM J, 9, 1488-1493.
Koutsos, V. (2025). Interfacial adhesion between fibres and polymers in fibre-reinforced polymer composites. Adhesives, 1(3), 11. https://www.mdpi.com/3042-6081/1/3/11
Marichelvam, M., Kumar, C. L., Kandakodeeswaran, K., Thangagiri, B., Saxena, K. K., Kishore, K., Wagri, N. K., & Kumar, S. (2023). Investigation on mechanical properties of novel natural fiber-epoxy resin hybrid composites for engineering structural applications. Case Studies in Construction Materials, 19, e02356.
Nairn, J. A. (1997). On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mechanics of Materials, 26(2), 63-80.
Niinimäki, K., Peters, G., Dahlbo, H., Perry, P., Rissanen, T., & Gwilt, A. (2020a). Author correction: The environmental price of fast fashion. Nature Reviews Earth & Environment, 1(5), 278-278. https://doi.org/10.1038/s43017-020-0054-x
Niinimäki, K., Peters, G., Dahlbo, H., Perry, P., Rissanen, T., & Gwilt, A. (2020b). The environmental price of fast fashion. Nature Reviews Earth & Environment, 1(4), 189-200. https://doi.org/10.1038/s43017-020-0039-9
Pan, Y., & Zhong, Z. (2015). The effect of hybridization on moisture absorption and mechanical degradation of natural fiber composites: An analytical approach. Composites Science and Technology, 110, 132-137. https://doi.org/https://doi.org/10.1016/j.compscitech.2015.02.005
Puttaswamygowda, P. H., Sharma, S., Ullal, A. K., & Shettar, M. (2024). Synergistic enhancement of the mechanical properties of epoxy-based coir fiber composites through alkaline treatment and nanoclay reinforcement. Journal of Composites Science, 8(2).
Sadrolodabaee, P., Claramunt, J., Ardanuy, M., & de la Fuente, A. (2021). A textile waste fiber-reinforced cement composite: Comparison between short random fiber and textile reinforcement. Materials, 14.
Saha, K., Dey, P. K., & Kumar, V. (2024). A comprehensive review of circular economy research in the textile and clothing industry. Journal of Cleaner Production, 444, 141252. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.141252
Samuel, B. O., Sumaila, M., & Dan-asabe, B. (2021). Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: An optimization approach. The International Journal of Advanced Manufacturing Technology, 119, 2077-2088.
Sangrutsamee, V., Kritsanapan, A., Sripanom, T., Rattanachai, N., Khamput, P., Wongbumru, T., & Chininthorn, P. (2022). New alternative recycled cloth fiber based on cement. International Journal of Building, Urban, Interior and Landscape Technology (BUILT), 20, 49-58.
Seid, A. M., & Adimass, S. A. (2024). Review on the impact behavior of natural fiber epoxy based composites. Heliyon, 10(20), e39116. https://doi.org/10.1016/j.heliyon.2024.e39116
Sekar, S., Suresh, K. S., Vigneshwaran, S., & Velmurugan, G. (2022). Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers, 19(5), 1772-1782. https://doi.org/10.1080/15440478.2020.1788487
Srichola, P., Witthayolankowit, K., Sukyai, P., Sampoompuang, C., Lobyam, K., Kampakun, P., & Toomtong, R. (2023). Recycling of nanocellulose from polyester-cotton textile waste for modification of film composites. Polymers (Basel), 15(15). https://doi.org/10.3390/polym15153324
Wang, X., Wei, M., Kovshar, S., & Leonovich, S. (2023). Effect of fiber type and volume fraction on the mechanical properties of structural concrete. DOI:10.21203/rs.3.rs-2544121/v1
Wang, Y., & Mertiny, P. (2024). Mechanical and thermal properties of epoxy resin upon addition of low-viscosity modifier. Polymers (Basel), 16(17). https://doi.org/10.3390/polym16172403
Witthayolankowit, K., Boonyarit, J., Srichola, P., Rungruangkitkrai, N., Apipatpapha, T., & Chollakup, R. (2023). Drought tolerant plants’ fiber and recycled PET co-fibrous composite as acoustic absorbers and thermal insulators. Journal of Natural Fibers, 20(2), 2277842. https://doi.org/10.1080/15440478.2023.2277842
Zonatti, W. F., Guimarães, B. M. G., Duleba, W., & Ramos, J. B. (2015). Thermoset composites reinforced with recycled cotton textile residues. Textiles and Clothing Sustainability, 1(1), 1. https://doi.org/10.1186/s40689-014-0001-7