การศึกษาคุณสมบัติของคอนกรีตบล็อกผสมเปลือกเมล็ดยางพารา: แนวทางใหม่ ของวัสดุก่อสร้างเพื่อสิ่งแวดล้อม

Main Article Content

วรวุฒิ มัธยันต์

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาคอนกรีตบล็อกผสมเปลือกเมล็ดยางพาราบด (พันธุ์ RRIM600) ซึ่งเป็นวัสดุเหลือทิ้งจากการเกษตรที่มีปริมาณมาก มีน้ำหนักเบา มีความแข็งแรงเนื่องจากมีส่วนประกอบของเซลลูโลสสูง เพื่อเป็นวัสดุทดแทนมวลรวมหยาบ (หินเกล็ด) ซึ่งช่วยเพิ่มคุณสมบัติในความเป็นฉนวนกันความร้อน ลดน้ำหนัก และลดต้นทุนการผลิต โดยไม่ส่งผลต่อค่าความต้านทานแรงอัด (≥ 2.5 MPa) เมื่อเปรียบเทียบกับเกณฑ์มาตรฐานอุตสาหกรรม (มอก. 58-2533) รวมถึงศึกษาเปรียบเทียบค่าสัมประสิทธิ์การนำความร้อน (k) คุณสมบัติด้านอุณหภูมิภายในอาคารภาคสนาม โดยใช้เปลือกเมล็ดยางพาราแทนที่หินเกล็ดในอัตราส่วนร้อยละ 0–100 (ช่วงห่างร้อยละ 10) โดยน้ำหนัก พบว่า อัตราส่วนที่เหมาะสมที่สุดคือ การแทนที่ร้อยละ 20 โดยน้ำหนัก (สัดส่วน A2) ซึ่งให้ค่าความต้านทานแรงอัดเฉลี่ย 4.98 MPa มีน้ำหนักลดลงร้อยละ 10.58 โดยเทียบกับคอนกรีตบล็อกที่ไม่ผสมเปลือกเมล็ดยางพารา (สัดส่วน A0) เมื่อขึ้นรูปเป็นคอนกรีตบล็อกมาตรฐานขนาด 19 x 39 x 7 ซม. พบว่า น้ำหนักลดลงร้อยละ 7.00 เมื่อเทียบกับคอนกรีตบล็อกที่มีขายทั่วไป ค่าสัมประสิทธิ์การนำความร้อนเฉลี่ยลดลงร้อยละ 18.87 เมื่อเทียบกับคอนกรีตบล็อกที่ไม่ผสมเปลือกเมล็ดยางพารา (สัดส่วน A0) และลดลงร้อยละ 21.40 เมื่อเทียบกับคอนกรีตบล็อกที่มีขายทั่วไป แสดงถึงประสิทธิภาพในการเป็นฉนวนกันความร้อน ในด้านการทดสอบด้านอุณหภูมิในอาคารจำลองภาคสนาม พบว่า อุณหภูมิสูงสุดภายในอาคารจำลองช่วงเวลากลางวันของอาคารที่ก่อผนังด้วยคอนกรีตบล็อกผสมเปลือกเมล็ดยางพาราต่ำกว่าอาคารจำลองที่ก่อผนังด้วยคอนกรีตบล็อกทั่วไป 1.04 °C อีกทั้งยังช่วยลดต้นทุนในการผลิตลงได้โดยมีราคาต่ำกว่าคอนกรีตบล็อกตามท้องตลาดร้อยละ 7.70


งานวิจัยนี้จึงชี้ให้เห็นถึงศักยภาพของเปลือกเมล็ดยางพาราในการพัฒนาเป็นวัสดุก่อสร้างที่เป็นมิตรต่อสิ่งแวดล้อม เพิ่มมูลค่าเศษวัสดุจากอุตสาหกรรมยางพารา ประหยัดพลังงาน และช่วยลดต้นทุนการก่อสร้างลงได้

Article Details

ประเภทบทความ
บทความวิชาการ

เอกสารอ้างอิง

กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน. (2547). แนวทางการเลือกใช้วัสดุก่อสร้างและฉนวนเพื่อการอนุรักษ์พลังงาน. https://e-lib.dede.go.th/mm-data/Bib9485.pdf

สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม. (2561). หลักเกณฑ์เฉพาะในการตรวจสอบเพื่อการอนุญาต สำหรับผลิตภัณฑ์คอนกรีตบล็อกไม่รับน้ำหนัก มาตรฐานเลขที่ มอก. 58-2533. http://law.industry.go.th/laws/file/60509

อภิชาต ศรีสะอาด และพริ้ม ศรีหานาม. (2554). เทคนิคการขยายพันธุ์ยางพาราด้วยตนเอง. บริษัท นาคา อินเตอร์มีเดีย.

Ahmad, R., & Ali, M. (2025). A review on introducing fibers in concrete for blocks, pavers and kerbstone. Construction Technologies and Architecture, 15, 79–84. https://doi.org/10.4028/p-pq8hma

Al-khafaji, F. F., Al Majeed, E. A., Al-Zubaidi, H., Naje, A. S., Hussain, T., & Chelliapan, S. (2024). Behavior of pavement concrete mixture with cellulose materials in the severe environments for sustainability purposes. Applied Chemical Engineering, 7(4). https://doi.org/10.59429/ace.v7i4.5571

Bardan, M., & Czarnecki, L. (2025). Green recycled aggregate in concrete: Feasibility study. Materials, 18(3), 488. https://doi.org/10.3390/ma18030488

Beskopylny, A., Shcherban, E., Stel’makh, S. A., Meskhi, B., Shilov, A., Varavka, V. N., Evtushenko, A., Özkılıç, Y. O., Aksoylu, C., & Karalar, M. (2022). Composition component influence on concrete properties with the additive of rubber tree seed shells. Applied Sciences, 12(22), 11744. https://doi.org/10.3390/app122211744

Damineli, B. L., & John, V. M. (2012, June). Developing low CO2 concretes: Is clinker replacement sufficient? The need of cement use efficiency improvement. Key Engineering Materials, 517, 342–351. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.517.342

Delarue, J., & Chambon, B. (2012). Thailand: Premier exporter of natural rubber through its family farmers. Économie Rurale, 4(330-331), 191–213. https://www.cairn-int.info/article-E_ECRU_330_0191--thailand-premier-exporter-of-natural.htm

Ekebafe, L. O., Igbonazobi, L. C., & Anakhu, E. A. (2020). Advances in natural rubber seed shell utilization in polymer technology. Journal of Advances in Science and Engineering, 3(2), 106–112. https://doi.org/10.37121/JASE.V3I2.87

Gonzalez, Y. E., Miranda-Cantillo, C., Quintero-Torres, J., Rhenals Julio, J. D., Jaramillo, A. F., & Cabello Eras, J. J. (2024). Substitution of sand in concrete blocks with coconut fiber and cattle manure: Effects on compressive strength and thermal conductivity. Buildings, 14(10), 3092. https://doi.org/10.3390/buildings14103092

Ghimire, P., Sah, S. K., Hoshmand, H. K., Gyeltshen, T., & Bahri, D. (2024). Experimental investigations on eco-friendly blocks. In Futuristic trends in construction materials & civil engineering (Vol. 3, Book 1, pp. 71–80). IIP Series. https://doi.org/10.58532/v3bjce1p1ch6

Haynes, R. D., & Yarbrough, D. W. (1989). Apparent thermal conductivity of low-density concrete obtained with a radial-heat-flow apparatus. In D. P. H. Hasselman & J. R. Thomas (Eds.), Thermal Conductivity 20 (pp. 265–274). Springer. https://doi.org/10.1007/978-1-4613-0761-7_26

Hussary, A. A. (2009). Thermal conductivity of lightweight concrete with admixtures. Faculty of Engineering, Universiti Malaysia Sarawak. https://ir.unimas.my/4566/

Iyayi, A. F., Akpaka, P. O., & Ukpeoyibo, U. (2008). Rubber seed processing for value-added latex production in Nigeria. African Journal of Agricultural Research, 3(7), 505–509. https://doi.org/10.5897/AJAR.9000611

Jha, A. K., Parihar, R. S., Lodhi, V., Misra, R., Kumar, B. M., & Udeniya, A. (2024). A review on the recycling waste materials for green concrete. Deleted Journal, 2(4), 74–82. https://doi.org/10.59324/ejaset.2024.2(4).04

Khalife, E., Sabouri, M., Kaveh, M. E., & Szymanek, M. (2024). Recent advances in the application of agricultural waste in construction. Applied Sciences, 14(6), 2355. https://doi.org/10.3390/app14062355

Kuntz, L. M. (2006). The “greening” of the concrete industry: Factors contributing to sustainable concrete. https://dspace.mit.edu/handle/1721.1/34594

Lyons, A. (2006). 2-Blocks and blockwork. In A. Lyons (Ed.), Materials for architects and builders (3rd ed.,pp. 32–47). Butterworth-Heinemann. https://doi.org/10.1016/B978-075066940-5/50029-0

Muthusamy, K., Nordin, N., Vesuvapateran, G., Ali, M. I., Harun, H., & Ullap, H. (2014). Exploratory study of rubber seed shell as partial coarse aggregate replacement in concrete. Research Journal of Applied Sciences, Engineering and Technology, 7(6), 1199–1202. https://doi.org/10.19026/RJASET.7.380

Nugraha, I. S., Alamsyah, A., & Sahuri, S. (2018). Effort to increase rubber farmers’ income when rubber low prices. Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah, 6(3), 345–352. https://doi.org/10.22437/PPD.V6I3.5817

Onojake, L., Apuyor, K. E., & Apuyor, S. E. (2023). Production of Carboxymethyl Cellulose (CMC) from rubber seed (Hevea brasiliensis) shells. African Scientist, 24(2), 283–289. https://doi.org/10.26538/africanscientist.24.1.202306017

Putra, N. R., & Abdul Aziz, A. H. (2023). Green extraction of valuable compounds from rubber seed trees: A path to sustainability. Applied Sciences, 13(24), 13102. https://doi.org/10.3390/app132413102

Raksritong, D., Tonnayopas, D., Taweepreda, W., & Masniyom, M. (2013). Green lightweight concrete made from natural para rubber product. Key Engineering Materials, 594-595, 460–464. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.594-595.460

Rashvand, P. (2009). Energy and CO2 emission evaluation of concrete waste. Faculty of Civil Engineering, Universiti Teknologi Malaysia. http://eprints.utm.my/2249/10/PooriaRashvandMFKA2009.pdf

Reshad, A. S., Tiwari, P., & Goud, V. V. (2017). Thermo-chemical conversion of waste rubber seed shell to produce fuel and value-added chemicals. Journal of The Energy Institute, 91(6), 940–950. https://doi.org/10.1016/J.JOEI.2017.09.002

Sattayawaksakul, D., & Choi, S. Y. (2016). Natural rubber export: A comparative analysis of the leading exporters in Southeast Asia. Abstract Proceedings International Scholars Conference, 4(1), 37. https://jurnal.unai.edu/index.php/isc/article/view/1751/1188

Shafiq, M. D., & Ismail, H. (2021). Multifunctional rubber seed biomass usage in polymer technology and engineering: A short review. Bioresources, 16(2), 4649–4662. https://doi.org/10.15376/BIORES.16.2.SHAFIQ

Sukontasukkul, P., & Chaikaew, C. (2005). Concrete Pedestrian Block Containing Crumb Rubber from Recycled Tires. Thammasat International Journal of Science and Technology, 10(2), 1–8.

Wagner, M., Lippe, M., Lewandowski, I., Salzer, M., & Cadisch, G. (2018). CO2 footprint of the seeds of rubber (Hevea brasiliensis) as a biodiesel feedstock source. Forests, 9(9), 548. https://doi.org/10.3390/F9090548

Worrell, E. (2013). Cement and energy. In Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09057-6

Yang, M., Zhu, W., & Cao, H. (2021). Biorefinery methods for extraction of oil and protein from rubber seed. Bioresources and Bioprocessing, 8(1), 45. https://doi.org/10.1186/S40643-021-00386-2