Development of the Multitask Computer Program for Assessing Depression with Electroencephalogram Measurements in Thai Adolescents

Main Article Content

ศราวุธ ราชมณี
สุชาดา กรเพชรปาณี
พีร วงศ์อุปราช

Abstract

The assessment of depression has possessed limitations in terms of theoretical incomprehensive and ignoring specific assessments of depression-related cognitive processes. This study aimed: (1) to develop a multitask computer program for assessing depression in Thai adolescents using electroencephalogram (EEG) measurements; (2) to develop a Thai version of the Beck Depression Inventory-Second Edition (BDI-II); and (3), to categorize the brain waves (EEG & ERP) observed while working on the computer program into three groups. The participants were 88 volunteers from Ang Sila health promotion district hospital, Chon Buri, aged between 13-22 years old in 2017. The research instruments were the multitask computer program for assessing depression and Thai version of BDI-II. Data were analyzed using ANOVA, Pearson’s correlation coefficient, Chi-square test for ordinal data, and brain network coherence analysis. The results were as follows. 1) The
multitask computer program for assessing depression was divided into two main blocks with four activities: Block1: Emotional Stroop task and the face recognition task, and Block 2: Emotional Stroop task and the word recognition task to divide participants into three depression levels, that is, minimal, mild, and moderate by using cut-off scores from response accuracy, response time, and EEG. 2) The Thai version of BDI-II was found to have an alpha reliability of 0.82. 3) The mean
amplitudes and latencies of P100, N200, and P300 ERPs were found to be significantly different at Frontal lobes and Occipital lobes at all electrode sites: F3, P3, P4, C3, C4, and O1. 4) Correlation coefficients between BDI-II scores and Relative Power were found to have the highest negative value at the left Frontal electrode site.

Article Details

Section
บทความวิจัย (Research Articles)

References

Allen, J. J., & Cohen, M. X. (2010). Deconstructing the “resting” state: exploring the temporal dynamics of frontal alpha asymmetry as an endophenotype for depression. Frontiers in Human Neuroscience, 4(232). doi: 10.3389/fnhum.2010.00232.
Arns, M., Drinkenburg, W. H., Fitzgerald, P. B., & Kenemans, J. L. (2012). Neurophysiological predictors of nonresponse to rTMS in depression. Brain Stimulation, 5(4), 569-576.
Auerbach, R. P., Stanton, C. H., Proudfit, G. H., & Pizzagalli, D. A. (2015). Self-referential processing in depressed adolescents: A high-density event-related potential
study. Journal of Abnormal Psychology, 124(2), 233-245. doi: 10.1037/abn0000023.
Beck. (1961). A systematic investigation of depression.Comprehensive Psychiatry, 2(3), 163-170.
Beck, & Bredemeier, K. (2016). A Unified Model of Depression: Integrating Clinical, Cognitive, Biological, and Evolutionary Perspectives. Clinical Psychological Science, 4(4), 596-619.
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8), 969-977.
Bradley, B. P., Mogg, K., & Lee, S. C. (1997). Attentional biases for negative information in induced and naturally occurring dysphoria. Behaviour Research and Therapy, 35(10), 911-927.
Bremner, J. D. (2004). Brain imaging in anxiety disorders. Expert Review of Neurotherapeutics, 4(2), 275-284.
Bridwell, D. A., Steele, V. R., Maurer, J. M., Kiehl, K. A., & Calhoun, V. D. (2015). The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs. J Affect Disord, 172, 89-95. doi: 10.1016/j.jad.2014.09.054.
Carretié, L., Hinojosa, J. A., Albert, J., López-Martín, S., De La Gándara, B. S., Igoa, J. M., & Sotillo, M. (2008). Modulation of ongoing cognitive processes by emotionally intense words. Psychophysiology, 45(2), 188-196.
Clark, D. A., & Beck, A. T. (2010). Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends in Cognitive Sciences, 14(9), 418-424.
Cocchi, L., Zalesky, A., Toepel, U., Whitford, T. J., DeLucia, M., Murray, M. M., & Carter, O. (2011). Dynamic changes in brain functional connectivity during concurrent dual-task performance. PLoS ONE, 6(11), e28301.
Dean, J., & Keshavan, M. (2017). The neurobiology of depression: An integrated view. Asian Journal of Psychiatry, 27, 101-111.
Delle-Vigne, Kornreich, C., Verbanck, P., & Campanella, S. (2015). The P300 component wave reveals differences in subclinical anxious-depressive states during bimodal oddball tasks: An effect of stimulus congruence. Clinical Neurophysiology, 126(11), 2108-2123.
Dolle, K., Schulte-Körne, G., O’Leary, A. M., von Hofacker, N., Izat, Y., & Allgaier, A.-K. (2012). The Beck Depression Inventory-II in adolescent mental health patients: Cut-off scores for detecting depression and rating severity. Psychiatry Research, 200(2-3), 843-848. doi: http://dx.doi.org/10.1016/j.psychres.2012.05.011.
Edmonds, W. A., & Kennedy, T. D. (2013). An applied reference guide to research designs : quantitative, qualitative, and mixed methods. Thousand Oaks: SAGE Publications.
Ekers, D., Webster, L., Van Straten, A., Cuijpers, P., Richards, D., & Gilbody, S. (2014). Behavioural Activation for Depression; An Update of Meta-Analysis of Effectiveness and Sub Group Analysis. PLoS ONE, 9(6), e100100.
Ellis, R., Seal, M. L., Adamson, C., Beare, R., Simmons, J. G., Whittle, S., & Allen, N. B. (2017). Brain connectivity networks and longitudinal trajectories of depression symptoms in adolescence. Psychiatry Research: Neuroimaging, 260, 62-69.
Epp, A. M., Dobson, K. S., Dozois, D. J. A., & Frewen, P. A. (2012). A systematic meta-analysis of the Stroop task in depression. Clinical Psychology Review, 32(4), 316-328.
Fingelkurts, A. A., & Fingelkurts, A. A. (2015). Altered Structure of Dynamic Electroencephalogram Oscillatory Pattern in Major Depression. Biological Psychiatry, 77(12), 1050-1060.
Fougnie, D., & Marois, R. (2009). Dual-task interference in visual working memory: a limitation in storage capacity but not in encoding or retrieval. Atten Percept Psychophys, 71(8), 1831-1841.
Gollan, J. K., Hoxha, D., Chihade, D., Pflieger, M. E., Rosebrock, L., & Cacioppo, J. (2014). Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biological Psychology, 41(99), 198-208.
Gotlib, & Joormann. (2010). Cognition and depression: current status and future directions. Annu Rev Clin Psychol, 6(1), 285-312.
Jesulola, E., Sharpley, C. F., Bitsika, V., Agnew, L. L., & Wilson, P. (2015). Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: Research findings and issues. Behavioural Brain Research, 292, 56-67.
Jiang, H., Popov, T., Jylanki, P., Bi, K., Yao, Z., Lu, Q., van Gerven, M. A. (2016). Predictability of depression severity based on posterior alpha oscillations. Clinical Neurophysiology, 127(4), 2108-2114. doi: 10.1016/j.clinph.2015.12.018
Joormann, J., & Stanton, C. H. (2016). Examining emotion regulation in depression: a review and future directions. Behaviour Research and Therapy, 86, 35-49.
Kropotov, J. D. (2009). Quantitative EEG, Event-related Potentials and Neurotherapy: Elsevier/Academic.
Li, Y., Cao, D., Wei, L., Tang, Y., & Wang, J. (2015). Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clinical Neurophysiology, 126(11), 2078-2089.
MacLeod, C. M. (2006). Stroop Effect in Language A2 - Brown, Keith Encyclopedia of Language & Linguistics (Second Edition)(pp. 161-165). Oxford: Elsevier.
Malinowski, A. S., Veselka, L., & Atkinson, B. E. (2017). An investigation of vulnerability factors for depression. Personality and Individual Differences, 107, 126-130.
Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annu. Rev. Clin. Psychol., 1, 167-195.
McMillan, J. H., & Schumacher, S. (2010). Research in Education: Evidence-Based Inquiry (7th ed.). Boston: MA: Pearson Higher Ed.
McNeely, H. E., Lau, M. A., Christensen, B. K., & Alain, C. (2008). Neurophysiological evidence of cognitive inhibition anomalies in persons with major depressive
disorder. Clinical Neurophysiology, 119(7), 1578-1589.
Moran, T. P., Schroder, H. S., Kneip, C., & Moser, J. S. (2017). Meta-analysis and psychophysiology: a tutorial using depression and action-monitoring event-related potentials. International Journal of Psychophysiology, 111, 17-32.
Mumtaz, W., Malik, A. S., Yasin, M. A. M., & Xia, L. (2015). Review on EEG and ERP predictive biomarkers for major depressive disorder. Biomedical Signal Processing and Control, 22, 85-98.
Nawani, H., Narayanaswamy, J. C., Basavaraju, S., Bose, A., Mahavir Agarwal, S., Venkatasubramanian, G., & Janardhan Reddy, Y. C. (2017). Enhanced error
related negativity amplitude in medication-naive, comorbidity-free obsessive compulsive disorder. Psychiatry Res. doi: 10.1016/j.psychres.2017.09.010
Papanicolaou, A. C., Simos, P. G., Castillo, E. M., Breier, J. I., Katz, J. S., & Wright, A. A. (2002). The hippocampus and memory of verbal and pictorial material.
Learning & Memory, 9(3), 99-104.
Peckham, A. D., McHugh, R. K., & Otto, M. W. (2010). A meta-analysis of the magnitude of biased attention in depression. Depression and Anxiety, 27(12), 1135-1142. doi: 10.1002/da.20755
Rayner, G., Jackson, G., & Wilson, S. (2016). Cognitionrelated brain networks underpin the symptoms of unipolar depression: Evidence from a systematic review. Neurosci Biobehav Rev, 61,53-65.
Rothmayr, C., Baumann, O., Endestad, T., Rutschmann, R. M., Magnussen, S., & Greenlee, M. W. (2007). Dissociation of neural correlates of verbal and non-verbal visual working memory with different delays. Behavioral and Brain Functions, 3(1), 56.
Stewart, J., Bismark, A. W., Towers, D. N., Coan, J. A., & Allen, J. J. (2010). Resting frontal EEG asymmetry as an endophenotype for depression risk: sex-specific patterns of frontal brain asymmetry. J Abnorm Psychol, 119(3), 502-512.
Sumich, A. L., Kumari, V., Heasman, B. C., Gordon, E., & Brammer, M. (2006). Abnormal asymmetry of N200 and P300 event-related potentials in subclinical depression. Journal of Affective Disorders, 92(2-3), 171-183.
Tang, W. K., Liang, H. J., Lau, C. G., Tang, A., & Ungvari, G. S. (2013). Relationship between cognitive impairment and depressive symptoms in current ketamine users. Journal of Studies on Alcohol and Drugs, 74(3), 460-468.
Tang, X., Qi, S., Jia, X., Wang, B., & Ren, W. (2017). Comprehension of scientific metaphors: Complementary processes revealed by ERP. Journal of Neurolinguistics, 42(Supplement C), 12-22. doi: https://doi.org/10.1016/j.jneuroling.2016.11.003.
Tenke, C. E., Kayser, J., Shankman, S. A., Griggs, C. B., Leite, P., Stewart, J. W., & Bruder, G. E. (2008). Hemispatial PCA dissociates temporal from parietal ERP generator
patterns: CSD components in healthy adults and depressed patients during a dichotic oddball task. International Journal of Psychophysiology, 67(1), 1-16.
Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R., & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 77-84.
Zhu, X. R., Zhang, H. J., Wu, T. T., Luo, W. B., & Luo, Y. J. (2010). Emotional conflict occurs at an early stage: evidence from the emotional face-word Stroop task. Neurosci Lett, 478(1), 1-4. doi: 10.1016/j.neulet.2010.04.036.