Policy Recommendations for the Strategic Implementation of Public Health Policy to Mitigate PM 2.5 Pollution through Artificial Intelligence: A Case Study on AI-Driven Lung Cancer Diagnosis
Keywords:
Public Health Policy Development, AI-Driven Governance, Big Data-Based PolicymakingAbstract
This study investigates the application of big data and artificial intelligence (AI) to support the formulation of evidence-based public health policy recommendations, with an emphasis on mitigating lung cancer risks linked to PM2.5 air pollution. Using 15,000 social media images, an AI model was trained via a convolutional neural network using Google’s Teachable Machine. The model achieved high performance with an accuracy of 100 percent and test accuracy of 99.5 percent, and low prediction error with loss of 0.01 percent and test loss of 1.67 percent. Key factors influencing policy implementation include policy resources, organizational capacity, and teamwork. The resulting AI model was deployed as a web application using the Python Flask framework, enabling real-time lung cancer diagnosis and rapid treatment responses. The study’s contributions include the design of a policy framework for the National Health Environment Data Center (NHEDC), the development of an AI-driven platform for real-time risk prediction, and the integration of proactive public health surveillance policy in high-risk PM2.5 areas.
References
Adefemi, A., Ukpoju, E. A., Adekoya, O., Abatan, A., & Adegbite, A. O. (2023). Artificial intelligence in environmental health and public safety: A comprehensive review of USA strategies. World Journal of Advanced Research and Reviews, 20(3), 1420–1434.
Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V. I. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1), 310. https://doi.org/10.1186/s12911-020-01332-6
Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D. P., & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x
AstraZeneca. (2025). AstraZeneca reveals success in using AI to screen lung cancer from x-ray images, enhancing sustainable health security. https://www.astrazeneca.com/country-sites/thailand/press-releases/astrazeneca-reveals-success-in-using-ai-to-screen-lung-cancer-from-x-ray-images-enhancing-sustainable-health-security.html
Bangkok Cancer Hospital. (2018). Lung cancer. https://www.bangkokhospital.com/en/bangkok-cancer/cancer-types/lung-cancer
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., et al. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012
Baucas, M. J., Spachos, P., & Gregori, S. (2021). Internet-of-Things devices and assistive technologies for health care: Applications, challenges, and opportunities. IEEE Signal Processing Magazine, 38(4), 65-77.
Bhavnagri, K. (2019). Convolutional neural networks: Basic theory in a nutshell. The Data Science Swiss Army Knife. https://www.kamwithk.com/convolutional-neural-networks-basic-theory-in-a-nutshell
Brynjolfsson, E., & McAfee, A. (2024). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.
Chaiyapan, S. (2021). The relationship between competencies of the operator and services quality of public and private organizations in bangkok area (in Thai). Journal of Educational Measurement, 38(104), 1-12.
Chantarasorn, W. (2005). Theories of Public Policy Implementation (in Thai). Bangkok: Sahai Block and Printing.
Chen, M., Ma, Y., Li, Y., Wu, D., Zhang, Y., & Youn, C. H. (2017). Wearable 2.0: Enabling human-cloud integration in next generation healthcare systems. IEEE Communications Magazine, 55(1), 54-61. https://doi.org/10.1109/MCOM.2017.1600410CM
Dank, A. J., Salwen, B., & Iticovici, M. (2021). Advancements in AI: Lung cancer diagnostics. Sackler Journal of Medicine, 6(1), 17.
De Filippo, G., Singh, S., Sisto, G., Lazoi, M., Mitrano, G., Pascarelli, C., et al. (2025). PrediHealth: Telemedicine and predictive algorithms for the care and prevention of patients with chronic heart failure. Computer Science, 2, 1-10.
Department of Medical Services. (2024). Lung cancer: A nearby threat statistics reveal that an average of 40 Thai people die per day (in Thai). Thai Health Promotion Foundation. https://www.thaihealth.or.th/?p=375765
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056
Fei, J., Yong, J., Hui, Z., Yi, D., Hao, L., Sufeng, M., et al. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243. https://doi.org/10.1136/svn-2017-000101
Ghanem, S., Moraleja, M., Gravesande, D., & Rooney, J. (2025). Integrating health equity in artificial intelligence for public health in Canada: a rapid narrative review. Frontiers in Public Health, 3, 1-8.
Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health, 3(11), e745-e750. https://doi.org/10.1016/s2589-7500(21)00208-9
Ghose, A., Guo, X., Li, B., & Dang, Y. (2021). Empowering patients using smart mobile health platforms: Evidence from a randomized field experiment [Manuscript submitted for publication].
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36. https://doi.org/10.1038/s41591-018-0307-0
Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov, 9(4), 1-13. https://doi.org/10.1002/widm.1312
Hsu, Y.-C., Verma, H., Mauri, A., Nourbakhsh, I., & Bozzon, A. (2022). Empowering local communities using artificial intelligence. Journal of Patterns Perspective, 3(3), 1-7.
Hwang, E. J., Park, S., Jin, K. N., Kim, J. I., Choi, S. Y., Lee, J. H., et al. (2019). Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open, 2(3), 1-13. https://doi.org/10.1001/jamanetworkopen.2019.1095
Jain, P., Bhardwaj, K., Saxena, S., & Elumalai, G. (2020). Lungs Cancer Detection System. International Research Journal of Engineering and Technology (IRJET), 7(5), 4639-4646.
Javed, R., Abbas, T., Khan, A. H., Daud, A., Bukhari, A., & Alharbey, R. J. A. I. R. (2024). Deep learning for lungs cancer detection: a review. Artificial Intelligence Review, 57(8), 197.
Kanluem, A., Jantharote, T., Worasiriwatthananon, W., Janthachot, J., & Bodeerat, C. (2023). The local promotion and development under driving the development of Thailand 4.0 (in Thai). Journal of Modern Learning Development, 8(4), 206–218.
Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195. https://doi.org/10.1186/s12916-019-1426-2
Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: emerging hazards and improved understanding of risk. Journal of Environmental Geochemistry Health, 37, 631-649.
Khamphui, W., Khantahate, P., & Phetchsudhi, A. (2021). Organizational competency factors affecting improving the quality development of public hospital management in Sakonnakhon province (in Thai). Journal of Pacific Institute of Management Science, 7(3), 335-349.
Khanthaniyom, P. (2019). Antecedents and consequences of e-collaboration use in academic institutions (in Thai). Journal of Business Information Systems, 5(3), 56-68.
Kingkaew, P., & Teerawattananon, Y. (2014). The economic evaluation of medical devices: Challenges. Journal of the Medical Association of Thailand, 97 Suppl 5, S102-S107.
Kittiamornkul, N. (2019). Healthcare System Prospects and Challenges in Thailand 4.0 (in Thai). Christian University Journal, 25(1), 133-141.
Koschmann, T. D., Myers, A., Feltovich, P. J., & Barrows, H. S. (1994). Using technology to assist in realizing effective learning and instruction: A principled approach to the use of computers in collaborative learning. Journal of the Learning Sciences, 3(3), 227-264.
Kruachottikul, P., Tea-makorn, P., Dumrongvute, P., Hemrungrojn, S., Nupairoj, N., Junchaya, O., & Vinayavekhin, S. (2024). MediGate: a MedTech product innovation development process from university research to successful commercialization within emerging markets. Journal of Innovation and Entrepreneurship, 13(1), 71. https://doi.org/10.1186/s13731-024-00439-8
Lary, D. J., Lary, T., & Sattler, B. (2015). Using machine learning to estimate global PM2.5 for environmental health studies. Journal of Environmental Health Insights, 9(S1), 41-52.
Leelahavarong, P., Doungthipsirikul, S., Kumluang, S., Poonchai, A., Kittiratchakool, N., Chinnacom, D., et al. (2019). Health technology assessment in Thailand: Institutionalization and contribution to healthcare decision making: Review of literature. International Journal of Technology Assessment in Health Care, 35(6), 467-473. https://doi.org/10.1017/S0266462319000321
Lei, F. (2024). The application of artificial intelligence in lung cancer research. Cancer Control, 31, 1-4. https://doi.org/10.1177/10732748241297373
Linkous, L., Zohrabi, N., & Abdelwahed, S. (2019). Health monitoring in smart homes utilizing internet of things [Paper presentation]. 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA. https://doi.org/10.1109/CHASE48038.2019.00020
Lynch, D. A., Sverzellati, N., Travis, W. D., Brown, K. K., Colby, T. V., Galvin, J. R., et al. (2018). Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. The Lancet. Respiratory Medicine, 6(2), 138–153. https://doi.org/10.1016/S2213-2600(17)30433-2
Mahakunajirakul, S. (2022). The adoption of innovative healthcare wearable devices in Thailand. International Journal of Science and Innovative Technology, 5(1), 24-36.
Maneerat, A., & Tharakorn, A. (2022). Digital for public administration (in Thai). Journal of Human and Society, 6(2), 21-41.
Martínez-Cerdá, J.-F., Torrent-Sellens, J., Martínez-Cerdá, J.-F., Torrent-Sellens, J., & González-González, I. (2018). Promoting collaborative skills in online university: Comparing effects of games, mixed reality, social media, and other tools for ICT-supported pedagogical practices. Behaviour & Information Technology, 37(10-11), 1055-1071.
Meskó, B., Hetényi, G., & Győrffy, Z. J. B. h. s. r. (2018). Will artificial intelligence solve the human resource crisis in healthcare?. BMC Health Service Research, 18, 1-4.
Mohara, A., Youngkong, S., Velasco, R. P., Werayingyong, P., Pachanee, K., Prakongsai, P., et al. (2012). Using health technology assessment for informing coverage decisions in Thailand. Special Report, 1(2), 137–146.
Mulshine, J. L., Pyenson, B., Healton, C., Aldige, C., Avila, R. S., Blum, T., et al. (2025). Paradigm shift in early detection: Lung cancer screening to comprehensive CT screening. European Journal of Cancer, 218, 1-7. https://doi.org/10.1016/j.ejca.2025.115264
Munpolsri, P., Sarakarn, P., & Munpolsri, N. (2021). Screening of lung cancer using chest radiographs with application AI chest for all (DMS TU) in the context of a regional cancer hospital (in Thai). Journal of Department of Medical Services, 46(1), 138–144.
Nigar, N. (2025). AI in remote patient monitoring. In P. Pape, G. Lerzynski, P. Glauner, J. Plugmann, & P. Plugmann (Eds.), Transformation in health care: Game-changers in digitalization, technology, AI and longevity (pp. 245-259). Springer Nature Switzerland.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future - Big data, machine learning, and clinical medicine. N Engl J Med, 375(13), 1216-1219. https://doi.org/10.1056/NEJMp1606181
Oyekunle, D., Matthew, U. O., Preston, D., & Boohene, D. (2024). Trust beyond technology algorithms: A theoretical exploration of consumer trust and behavior in technological consumption and AI projects. Journal of Computer and Communications, 12(6), 1-31.
Patel, P. M., Green, M., Tram, J., Wang, E., Murphy, M. Z., Abd-Elsayed, A., & Chakravarthy, K. (2024). Beyond the pain management clinic: The role of AI-integrated remote patient monitoring in chronic disease management - A Narrative Review. J Pain Res, 17, 4223-4237. https://doi.org/10.2147/jpr.S494238
Pawar, V. J., Kharat, K. D., Pardeshi, S. R., & Pathak, P. D. (2020). Lung cancer detection system using image processing and machine learning techniques. International Journal of Advanced Trends in Computer Science and Engineering, 3(4), 5956-5963.
Phon-eg-phan, R. (2019). Technology foresight for medical device development in Thailand (in Thai) [Unpublished master's thesis]. Mahidol University.
Pichetworakoon, A., Kooptarnond, N., & Ngamchuensuwan, S. (2021). Economic and legal on the deploying of medical and healthcare robotics: Case study on a comparison of the European Union (EU), South Africa, and Thailand (in Thai). The Journal of Law, Public Administration and Social Science, 5(2), 21-43.
Promboonruang, S., Boonrod, T., Radasai, P., & Suphaphan, S. (2023). Jujube classification from images using deep learning technique. Journal of Science Ladkrabang, 32(2), 97-112.
Rahane, W., Dalvi, H., Magar, Y., Kalane, A., & Jondhale, S. (2018). Lung cancer detection using image processing and machine learning healthcare [Paper presentation]. 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, Tamil Nadu, India. https://doi.org/10.1109/ICCTCT.2018.8551008
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. N Engl J Med, 380(14), 1347-1358. https://doi.org/10.1056/NEJMra1814259
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest x-rays with deep learning. Computer Vision and Pattern Recognition, 3, 1-7.
Ramezani, M., Takian, A., Bakhtiari, A., Rabiee, H. R., Ghazanfari, S., & Mostafavi, H. (2023). The application of artificial intelligence in health policy: A scoping review. BMC Health Services Research, 23(1), 1416. https://doi.org/10.1186/s12913-023-10462-2
Reddy, S., Fox, J., & Purohit, M. P. (2019). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 112(1), 22-28.
Ruangsapdech, K. (2022). Smart Medicine: The Use of Artificial Intelligence for Diagnosis and Treatment (in Thai). Post Today. https://www.posttoday.com/post-next/innovation/688503
Rujirawat, M. (2024). The dust crisis in Thailand and its impact on public health (in Thai). Chulabhorn Research Institute. https://www.cri.or.th/th/articles-20240320/
Setio, A. A. A., Traverso, A., de Bel, T., Berens, M. S. N., Bogaard, C. V. D., Cerello, P., Chen, H., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 42, 1–13. https://doi.org/10.1016/j.media.2017.06.015
Shaik, T., Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., et al. (2023). Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. WIRES Data Mining and Knowledge Discovery, 13(2), 1-31.
Sharma, A., Harrington, R. A., McClellan, M. B., Turakhia, M. P., Eapen, Z. J., Steinhubl, S., et al. (2018). Using digital health technology to better generate evidence and deliver evidence-based care. J Am Coll Cardiol, 71(23), 2680-2690. https://doi.org/10.1016/j.jacc.2018.03.523
Sila, W. (2023). Digital technology application for cancer patients receiving chemotherapy (in Thai). Journal of Health and Food Creation, 1(1), 64-71.
Sridacha, K., Chamruspanth, V., & Piyanantisak, P. (2024). Competency development among the directors of medium-sized subdistrict health promotion hospitals under the Provincial Administrative Organizations in the Upper Northeastern Region. Journal of Public Administration, Public Affairs, and Management, 22(2), 123-144.
Srikam, S., & Joralee, T. (2025). Development of tools supporting proactive health services in the community of Kudkhaopun district, Ubon Ratchathani province (in Thai). Regional Health Promotion Center 9 Journal, 19(1), 353-369.
Sriwiboon, N. (2021). Improvement the performance of the chest x-ray image classification with convolutional neural network model by using image augmentations technique for COVID-19 diagnosis (in Thai). The Journal of King Mongkut's University of Technology North Bangkok, 31(1), 109-117.
Strategy and Planning Division. (2018). Twenty-year national strategic plan for public health (2017–2036). Ministry of Public Health.
Tantivess, S., Yothasamut, J., & Saengsri, W. (2019). Utilisation of evidence from Thailand's National Health Examination Survey in policy development: finding the weakest link. Health Research Policy and Systems, 17(1), 104. https://doi.org/10.1186/s12961-019-0512-4
Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (XAI): Toward medical XAI. Journal of IEEE Transactions on Neural Networks Learning Systems, 32(11), 4793-4813.
Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2021). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398
Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Glob Health, 3(4), 1-7. https://doi.org/10.1136/bmjgh-2018-000798
Wisetsena, N. (2022). Public health innovation in Thailand 4.0 (in Thai). Public Health Policy & Law Journal, 8(3), 531-540.
Wong, E. (2022). Media review: Deep medicine: How artificial intelligence can make healthcare human again. 15(10), 611-611. https://doi.org/10.1177/17557380211018237
World Health Organization. (2021a). Ethics and governance of artificial intelligence for health. https://www.who.int/publications/i/item/9789240029200
World Health Organization. (2021b). Global strategy on digital health 2020-2025. https://iris.who.int/bitstream/handle/10665/344249/9789240020924-eng.pdf?sequence=1
Xing, J., Zheng, S., Ding, D., Kelly, J. T., Wang, S., Li, S., et al. (2020). Deep learning for prediction of the air quality response to emission changes. Environ Sci Technol, 54(14), 8589-8600. https://doi.org/10.1021/acs.est.0c02923
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.