English Clickbait Language Features Which Attract Thai Tertiary EFL Learners

Main Article Content

Wipatsaya Srimanoi
Atipat Boonmoh

Abstract

This study explored how likely its Thai participants were to choose to read an article with a clickbait headline, together with how the reasons given for choosing clickbait headlines correspond to the linguistic features found in the headlines. News headlines were presented to 18 participants to rate which news headline they would choose. Then, the rationales behind the selection were elicited using an interview. The results revealed that the majority of the participants preferred non-clickbait headlines because they consider the relevancy of the headlines to themselves as the major factor, followed by the linguistic features of the headline, which marked education as not relevant to choosing to read a news headline. Among the headlines selected, numbers and unanswered questions play a vital role in influencing people to choose non-academic headlines. Numbers make the headline easier to follow and look reliable, while unanswered questions prompt the reader to discover the truth. All in all, clickbait is not as ‘clickbaity’ when personal relevance and preference affect headline selection. Here, personal relevance includes background, interest, and age, whereas personal preference includes entertaining content, use of neutral words, non-question type headlines, and use of formal words used.

Article Details

How to Cite
Srimanoi, W., & Boonmoh, A. (2025). English Clickbait Language Features Which Attract Thai Tertiary EFL Learners. rEFLections, 32(1), 104–125. https://doi.org/10.61508/refl.v32i1.278870
Section
Research articles

References

Au, H., Bright, J., & Howard, P. N. (2020). Social media misinformation and lockdown measures in democracies [COMPROP Coronavirus Misinformation Weekly Briefing 27-04-2020]. Oxford Internet Institute. https://demtech.oii.ox.ac.uk/wp-content/uploads/sites/12/2020/06/ComProp-Coronavirus-Misinformation-Weekly-Briefing-27-04-2020.pdf

Bazaco, A., Redondo, M., & Sánchez-García, P. (2019). Clickbait as a strategy of viral journalism: Conceptualisation and methods. Revista Latina de Comunicación Social, 74, 94–115. http://dx.doi.org/10.4185/RLCS-2019-1323en DOI: https://doi.org/10.4185/RLCS-2019-1323

Bednarek, M. (2006). Evaluation in media discourse: Analysis of a newspaper corpus. Bloomsbury.

Bednarek, M., & Caple, H. (2017). The discourse of news values: How news organisations create newsworthiness. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780190653934.001.0001

Blom, J. N., & Hansen, K. R. (2015). Clickbait: Forward-reference as lure in online news headlines. Journal of Pragmatics, 76, 87–100. https://doi.org/10.1016/j.pragma.2014.11.010 DOI: https://doi.org/10.1016/j.pragma.2014.11.010

Bonyadi, A., & Samuel, M. (2013). Headlines in newspaper editorials: A contrastive study. SAGE Open, 3(2), Article 494863. https://doi.org/10.1177/2158244013494863 DOI: https://doi.org/10.1177/2158244013494863

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa DOI: https://doi.org/10.1191/1478088706qp063oa

Chakraborty, A., Paranjape, B., Kakarla, S., & Ganguly, N. (2016). Stop clickbait: Detecting and preventing clickbaits in online news media. In R. Kumar, J. Caverlee & H. Tong (Eds.), Proceedings of the 2016 IEEE/ACM DOI: https://doi.org/10.1109/ASONAM.2016.7752207

international conference on advances in social networks analysis and mining (ASONAM 2016) (pp. 9–16). IEEE Press. https://doi.ieeecomputersociety.org/10.1109/ASONAM.2016.7752207

Chen, Y., Conroy, N. J., & Rubin, V. L. (2015). Misleading online content: Recognizing clickbait as "false news". In M. Abouelenien, M. Burzo, R. Mihalcea & V. Pérez-Rosas (Eds.), Proceedings of the 2015 ACM on workshop on multimodal deception detection (pp. 15–19). Association for Computing Machinery. https://doi.org/10.1145/2823465.2823467 DOI: https://doi.org/10.1145/2823465.2823467

Coste, C. I., & Bufnea, D. (2021). Advances in clickbait and fake news detection using new language-independent strategies. Journal of Communications Software and Systems, 17(3), 270–280. http://doi.org/10.24138/jcomss-2021-0038 DOI: https://doi.org/10.24138/jcomss-2021-0038

DiResta, R., Shaffer, K., Ruppel, B., Sullivan, D., Matney, R., Fox, R., Albright, J., & Johnson, B. (2019). The tactics & tropes of the Internet Research Agency. U.S. Senate Documents. https://digitalcommons.unl.edu/senatedocs/2

Guerini, M., & Staiano, J. (2015). Deep feelings: A massive cross-lingual study on the relation between emotions and virality. In A. Gangemi, S. Leonardi & A. Panconesi (Eds.), Proceedings of the 24th international conference on world wide web (pp. 299–305). Association for Computing Machinery. https://doi.org/10.1145/2740908.2743058 DOI: https://doi.org/10.1145/2740908.2743058

Horne, B., & Adali, S. (2017). This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. Proceedings of the international AAAI conference on web and social media, 11(1), 759–766. http://doi.org/10.1609/icwsm.v11i1.14976 DOI: https://doi.org/10.1609/icwsm.v11i1.14976

Karaca, A. (2019). News readers’ perception of clickbait news [Master’s thesis, Kadir Has University]. Kadir Has University Academic Repository. https://hdl.handle.net/20.500.12469/2753

Kormelink, T. G., & Meijer, I. C. (2018). What clicks actually mean: Exploring digital news user practices. Journalism, 19(5), 668–683. https://doi.org/10.1177/1464884916688290 DOI: https://doi.org/10.1177/1464884916688290

Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094–1096. https://doi.org/10.1126/science.aao2998 DOI: https://doi.org/10.1126/science.aao2998

Lee, C. L., Chung, S. F., & Liu, H. W. (2019). Investigation of Mandarin clickbait headlines: A case study of Biàn Zhèyàng. In R. Otoguro, M. Komachi & T. Ohkuma (Eds.) Proceedings of the 33rd Pacific Asia conference on language, information and computation (pp. 442-451). Waseda Institute for the Study of Language and Information.

Luo, M., Hancock, J. T., & Markowitz, D. M. (2022). Credibility perceptions and detection accuracy of fake news headlines on social media: Effects of truth-bias and endorsement cues. Communication Research, 49(2), 171–195. https://doi.org/10.1177/0093650220921321 DOI: https://doi.org/10.1177/0093650220921321

Molek-Kozakowska, K. (2013). Towards a pragma-linguistic framework for the study of sensationalism in news headlines. Discourse & Communication, 7(2), 173–197. https://doi.org/10.1177/1750481312471668 DOI: https://doi.org/10.1177/1750481312471668

Molina, M. D., Sundar, S. S., Rony, M. M. U., Hassan, N., Le, T., & Lee, D. (2021). Does clickbait actually attract more clicks? Three clickbait studies you must read. In Y. Kitamura & A. Quigley (Eds.), Proceedings of the 2021 CHI conference on human factors in computing systems (pp. 1-19). Association for Computing Machinery. https://doi.org/10.1145/3411764.3445753 DOI: https://doi.org/10.1145/3411764.3445753

Munger, K., Luca, M., Nagler, J., & Tucker, J. (2020). The (null) effects of clickbait headlines on polarization, trust, and learning. Public Opinion Quarterly, 84(1), 49–73. https://doi.org/10.1093/poq/nfaa008 DOI: https://doi.org/10.1093/poq/nfaa008

Newman, N., Fletcher, R., Schulz, A., Andi, S., Robertson, C., & Nielsen, R. K. (2021). Reuters institute digital news report 2021. Reuters Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2021-06/Digital_News_Report_2021_FINAL.pdf

Rubin, H. J., & Rubin, I. S. (2011). Qualitative interviewing: The art of hearing data. Sage.

Smith, A., & Anderson, M. (2018). Social media use in 2018. Pew Research Center. http://www.pewinternet.org/2018/03/01/social-media-use-in-2018/

Thomas, D. (2020). Social media addiction, critical thinking and achievement emotions among EFL students in Thailand. Asia Pacific Journal of Educators and Education, 35(1), 157–171. https://doi.org/10.21315/apjee2020.35.1.9 DOI: https://doi.org/10.21315/apjee2020.35.1.9

Viriyavejakul, C. (2019). Analysis of fake news and the level of cognitive perception of undergraduate students in the university in Thailand. In L. Rønningsbakk, T.-T. Wu & F. E. Sandnes (Eds.), Innovative technologies and learning: Second international conference (ICITL 2019) (pp. 772–780). Springer International Publishing. https://doi.org/10.1007/978-3-030-35343-8_80 DOI: https://doi.org/10.1007/978-3-030-35343-8_80

Woodward, M. (2023). Social media addiction statistics for 2024. Search Logistics. https://www.searchlogistics.com/learn/statistics/social-media-addiction-statistics/

Zimmer, F., Scheibe, K., Stock, M., & Stock, W. G. (2019). Fake news in social media: Bad algorithms or biased users? Journal of Information Science Theory and Practice, 7(2), 40–53. https://doi.org/10.1633/JISTaP.2019.7.2.4

Zimmer, F., Scheibe, K., Stock, M., & Stock, W. G. (2019). Echo chambers and filter bubbles of fake news in social media: Man-made or produced by algorithms. In R. McCallum (Ed.), 8th Annual arts, humanities, social sciences & education conference (pp. 1–22). Hawaii University International Conferences. https://huichawaii.org/wp-content/uploads/2018/12/Zimmer-Franziska-2019-AHSE-HUIC.pdf