PRE-SERVICE TEACHERS’ COLLABORATIVELY DESIGN OPEN-ENDED PROBLEM SITUATION
Main Article Content
Abstract
This paper was aimed to explore pre-service teachers’ open - ended problem situations designing collaboratively in lesson study. This study was a qualitative research. The target group is 10 pre-service teachers in the early stages of learning and practice with lesson study and open approach as innovations. The data was collected from compact lesson plan form, videotaping and voice recording while participants were collaborative working, mathematics lesson on weight, circle and graph, and interviewing. Analysis methods were protocol analysis and descriptive analysis was used to describe the information. The research results were found that in context design, participants faced difficulties as follows:
(1) difficulty on designing the context of a problem situation, participants were unable to decide whether the problem situations were consistent with the student's experience. (2) difficulty on design the context in line with the key materials which students had to deal with in solving problem. (3) difficulty on context design of multi-sequence activities, participants were unable to link the contexts of each sequence to be continuity. For condition design, participants faced difficulties as follows: (1) difficulty on directions design that only emphasized on ordering students to act on what teacher expected directly not give students opportunities to think and solve problem by themselves. (2) difficulty on conjecturing students’ mathematical ideas, they anticipated at the level of students’ behavior, but do not anticipate a wide range of mathematical ideas and possible reasoning that could lead to effectively discussing in classroom.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright Notice
The content and information in the articles published in Journal of MCU Palisueksabuddhaghosa Review, are regarded as opinions and responsibilities of article author only. It definitely does not mean that the editor must agree or share any responsibility to the author.
Articles, information, content, figure etc. that have been published in the Journal of MCU Palisueksabuddhaghosa Review is considered as the copyright of the Journal. If any individual or organization will to bring any parts of article for promote or to do anything, must be licensed only in official form from the Journal of MCU Palisueksabuddhaghosa Review.
The content and information in the articles published in Journal of MCU Palisueksabuddhaghosa Review, are regarded as opinions and responsibilities of article author only. It definitely does not mean that the editor must agree or share any responsibility to the author.
Articles, information, content, figure etc. that have been published in the Journal of MCU Palisueksabuddhaghosa Review is considered as the copyright of the Journal. If any individual or organization will to bring any parts of article for promote or to do anything, must be licensed only in official form from the Journal of MCU Palisueksabuddhaghosa Review.
References
ประเวศ วะสี. (2543). ปฏิรูปการเรียนรู้ ผู้เรียนสำคัญที่สุด. กรุงเทพฯ : คุรุสภา ลาดพร้าว.
ไมตรี อินทร์ประสิทธิ์. (2549). รายงานการวิจัยฉบับสมบูรณ์ โครงการปฏิรูปกระบวนการเรียนรู้คณิตศาสตร์ของนักเรียนชั้นมัธยมศึกษาด้วยยุทธวิธีปัญหาปลายเปิด. ขอนแก่น: คณะศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น.
_______. (2557). กระบวนการแก้ปัญหาในคณิตศาสตร์ระดับโรงเรียน (Processes of Problem Solving in School Mathematics). ขอนแก่น: ศูนย์วิจัยคณิตศาสตรศึกษา.
_______. (2560). คู่มือการปฏิบัติงานสำหรับบุคลากรในโครงการการใช้นวัตกรรมการศึกษาชั้นเรียน (Lesson Study) และวิธีการแบบเปิด (Open Approach), ขอนแก่น: โครงการแก้ไขปัญหาสาธารณสุขและการศึกษาในภาคตะวันออกเฉียงเหนือเพื่อลดความเหลื่อมล้ำทางสังคมของ มหาวิทยาลัยขอนแก่น.
Brahier, D. (2013).Teaching secondary and middle school mathematics (5th ed.). Boston: Pearson-Allyn & Bacon Publishers.
Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem posing research in mathematics: Some answered and unanswered questions. In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp. 3–34). New York, NY: Springer
Edgington, Cyndi. (2014). Teachers’ Uses of a Learning Trajectory as a Tool for Mathematics Lesson Planning. 10.1007/978-3-319-02562-9_14.
Lampert, M., Beasley, H., Ghousseini, H., Kazemi, E., & Franke, M. L. (2010). Using designed instructional activities to enable novices to manage ambitious mathematics teaching. In M. K. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 129–141). New York, NY: Springer.
Schoenfeld, A. S. (2010). How we think: A theory of goal-oriented decision making and its educational applications. New York: Routledge.
Smith, M. S., Bill, V., & Hughes, E. K. (2008). Thinking through a lesson: Successfully implementing high-level tasks. Mathematics Teaching in the Middle School, 14(3), 132–138.
Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive mathematics discussions. Virginia, United States: National Council of Teachers of Mathematics Inc.