How AI-Driven Echo Chambers Influence Political Polarization
Keywords:
Artificial Intelligence, Echo Chambers, Political Polarization, Social Media AlgorithmsAbstract
The development of Artificial Intelligence (AI) has profoundly transformed the landscape of political communication, particularly through the algorithmic systems of social media platforms. These algorithms curate content, reduce exposure to diverse perspectives, and reinforce ideological bias through mechanisms such as echo chambers, contributing significantly to political polarization. This academic article analyzes the influence of AI-driven algorithms on political polarization through three major case studies: (1) the U.S. presidential elections of 2016, 2020, and 2024; (2) the Brexit referendum and its algorithmic-driven decision-making environment; and (3) the role of Twitter’s algorithm in amplifying extremist discourse. Employing content analysis and case study methods, the findings indicate that AI plays a critical role in constructing ideologically biased information ecosystems, facilitating the spread of misinformation, and suppressing exposure to contrasting viewpoints-ultimately intensifying the radicalization of political attitudes. The article concludes by proposing key policy measures to mitigate these effects, including enhancing algorithmic transparency, designing diversity-aware algorithms, and promoting digital and media literacy to support the foundations of a strong and sustainable democracy.
References
ณธกร สุทธิรัตน์, วิทยาธร ท่อแก้ว, และกวิทธิ์ ศรีสัมฤทธิ์. (2568).การสื่อสารความรุนแรงทางการเมืองบนโซเชียลมีเดีย: ความท้าทาย กรอบทฤษฎี และแนวทางการกำกับดูแล. วารสารนิเทศศาสตร์ มสธ., 15(1), 17–37.
ปริญญา หอมเอนก. (2566). ปัญญาประดิษฐ์กับการเมืองไทย: โอกาสและความท้าทาย. สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย.
สุรัชน์ โควสุรัตน์. (2564). สื่อสังคมออนไลน์กับการเมืองไทย: การแบ่งขั้วและการจัดการข้อมูล. สำนักพิมพ์มหาวิทยาลัยธรรมศาสตร์.
Allcott, H. & Gentzkow, M. (2017). Social Media and Fake News in The 2016 Election. Journal of Economic Perspectives, 31 (2), 211-36. DOI: 10.1257/jep.31.2.211
Aral, S. (2020). The Hype Machine: How Social Media Disrupts our Elections, our Economy, and Our Health—and How We Must Adapt. Currency.
Arksey, H., & O’Malley, L. (2005). Scoping Studies: Towards a Methodological Framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Bangkokbiznews. (2024, January 15). โซเชียลมีเดียกับการแบ่งขั้วทางการเมือง. https://www.bangkokbiznews.com/social/2024/01/15/1023445
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to Ideologically Diverse News and Opinion on Facebook. Science, 348(6239), 1130–1132. https://doi.org/10.1126/science.aaa1160
Brexit. (2016). Brexit Negotiations. European Council. https://www.consilium.europa.eu/en/policies/the-eu-uk-withdrawal-agreement/
Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A., & Van Bavel, J. J. (2017). Emotion Shapes The Diffusion of Moralized Content in Social Networks. Proceedings of the National Academy of Sciences, 114(28), 7313–7318. https://doi.org/10.1073/pnas.161892311
Cadwalladr, C., & Graham-Harrison, E. (2018). Revealed: 50 Million Facebook Profiles Harvested for Cambridge Analytica in Major Data Breach. The Guardian. https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., ... & Quattrociocchi, W. (2016). Echo Chambers and Viral Misinformation: Modeling Fake News Diffusion in The Social Media. Scientific Reports, 6, 37876. https://doi.org/10.1038/srep37876
Diakopoulos, N. (2020). Automating The News: How Algorithms are Rewriting The Media. Harvard University Press.
D’Ignazio, C., & Klein, L. F. (2020). Data feminism. MIT Press.
Eubanks, V. (2018). Automating Inequality: How High-tech Tools Profile, Police, and Punish The Poor. St. Martin’s Press.
Ferrara, E. (2020). What Types of COVID-19 Conspiracies are Populated by Twitter Bots?. First Monday, 25(6). https://doi.org/10.5210/fm.v25i6.10633
Gillespie, T. (2018). Custodians of The Internet: Platforms, Content Moderation, and The Hidden Decisions That Shape Social Media. Yale University Press.
Gillespie, T. (2020). Content Moderation, AI, and The Question of Scale. In N. Persily & J. A. Tucker (Eds.), Social Media and Democracy: The State of The Field, Prospects for Reform (pp. 311–326). Cambridge University Press.
Guess, A., Nagler, J., & Tucker, J. (2020). Less Than You think: Prevalence and Predictors of Fake News Dissemination on Facebook. Science Advances, 5(1), eaau4586. https://doi.org/10.1126/sciadv.aau4586
Hanska-Ahy, M. T. (2017). Polarization and The Democratic Public Sphere. Journal of Political Ideologies, 22(3), 223–240.
Helberger, N. (2019). On The Democratic Role of News Recommenders. Digital Journalism, 7(8), 993–1012. https://doi.org/10.1080/21670811.2019.1623700
Huszár, F., Ktena, S. I., O’Brien, C., Belli, L., Schlaikjer, A., & Hardt, M. (2021). Algorithmic Amplification of Politics on Twitter. Proceedings of the National Academy of Sciences, 119(1), e2025334119. https://doi.org/10.1073/pnas.2025334119
Iyengar, S., Sood, G., & Lelkes, Y. (2019). Affect, not Ideology: A Social Identity Perspective on Polarization. Public Opinion Quarterly, 76(3), 405–431. https://doi.org/10.1093/poq/nfs038
Kubin, E., & von Sikorski, C. (2021). The Role of (Social) Media in Political Polarization: A Systematic Review. Annals of the International Communication Association, 45(3), 188–206.
Levac, D., Colquhoun, H., & O’Brien, K. K. (2010). Scoping Studies: Advancing The Methodology. Implementation Science, 5, 69. https://doi.org/10.1186/1748-5908-5-69
Narayanan, A., McDonald, A. M., & Vallina-Rodriguez, N. (2022). Privacy, Transparency, and Accountability in Algorithmic Decision-making Systems. Communications of the ACM, 65(1), 56–63.
Napoli, P. M. (2019). Social Media and The Public Interest: Media Regulation in The Disinformation Age. Columbia University Press.
Papacharissi, Z. (2015). Affective Publics: Sentiment, Technology, and Politics. Oxford University Press.
Pariser, E. (2011). The Filter Bubble: What The Internet is Hiding from You. Penguin Press.
Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press.
Persily, N., & Tucker, J. A. (Eds.). (2020). Social Media and Democracy: The State of The Field, Prospects for Reform. Cambridge University Press.
Spohr, D. (2017). Fake News and Ideological Polarization: Filter Bubbles and Selective Exposure on Social Media. Business Information Review, 34(3), 150–160.
Sunstein, C. R. (2001). Republic.com. Princeton University Press.
Sunstein, C. R. (2007). Republic.com 2.0. Princeton University Press.
Sunstein, C. R. (2017). #Republic: Divided democracy in the age of social media. Princeton University Press.
Thai PBS. (2565). บทบาทของอัลกอริทึม Facebook ในการแบ่งขั้วทางการเมือง. https://www.thaipbs.or.th/
Tufekci, Z. (2015). Algorithmic Harms Beyond Facebook and Google: Emergent Challenges of Computational Agency. Colorado Technology Law Journal, 13, 203–218.
Tufekci, Z. (2018). Twitter and Tear Gas: The Power and Fragility of Networked Protest. Yale University Press.
van Dijck, J., Poell, T., & de Waal, M. (2018). The Platform Society: Public Values in a Connective World. Oxford University Press.
Vosoughi, S., Roy, D., & Aral, S. (2018). The Spread of True and False News Online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559
Wardle, C., & Derakhshan, H. (2017). Information Disorder: Toward an Interdisciplinary Framework for Research and Policy Making. Council of Europe.
Williams, R. (1977). Marxism and literature. Oxford University Press.
Zeng, J., Schäfer, M. S., & Allgaier, J. (2021). Reposting “Scienced” YouTube Videos: The Role of YouTube in The Communication of Climate Change. Frontiers in Communication, 6, 675261.
Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at The New Frontier of Power. Public Affairs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Mass Communication Technology, RMUTP

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) Journal of Mass Communicaiton Technology, RMUTP
Journal of Journal of Mass Communicaiton Technology, RMUTP is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. (CC BY-Nc-ND 4.0) licence, unless otherwise stated. Please read our Pollicies page for more information on Open Access, copyright and permissions.
