Students’ Mathematical Ideas in Problem-Solving Mathematics Classrooms: A Case Study of Circle Area Application
Main Article Content
Abstract
This study employed a case study design and a qualitative research methodology. Data were analyzed using deductive content analysis. The objective was to identify the characteristics of sixth-grade students’ mathematical ideas that emerged during problem-solving tasks related to the application of circle area. The target group consisted of 64 sixth-grade students from a national university-affiliated elementary school in Japan, selected through purposive sampling. The primary data source was a lesson plan from the unit on the area of a circle, specifically the fourth lesson in a five-lesson sequence. Data were collected from students’ written work, and the analysis was guided by the framework of mathematical thinking developed by Isoda & Katagiri (2012).
The findings revealed eight core mathematical ideas demonstrated by students: the idea of sets, the idea of units, the idea of representations, the idea of operations, the idea of algorithms, the idea of approximations, the idea of fundamental properties, and the idea of expression. Examples of student thinking included the use of images and symbols to explain calculation methods and solutions, execution of mathematical operations to determine area, and application of fundamental properties to construct and interpret mathematical expressions.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
จตุพร นาสินสร้อย, นฤมล ช่างศรี และไมตรี อินทร์ประสิทธิ์. (2558). การคิดทางคณิตศาสตร์ของนักเรียน เรื่อง การคูณ ในชั้นเรียนที่ใช้การศึกษาชั้นเรียนและวิธีการแบบเปิด. วารสารศึกษาศาสตร์ มหาวิทยาลัยขอนแก่น, 38(3), น. 133-142.
ไมตรี อินทร์ประสิทธิ์. (2565). กระบวนการแก้ปัญหาคณิตศาสตร์ระดับโรงเรียน (พิมพ์ครั้งที่ 2). ขอนแก่น: ไอ-ปริ้นท์ ดีไซน์.
Cai, J., & Hwang, S. (2022). Seeing algebra in arithmetic through mathematical problem posing. Journal of Educational Research in Mathematics, 33(3), pp. 309-329. Retrieved February 6, 2025, from https://doi.org/10.29275/jerm.2022.32.3.309
Changsri, N., Inprasitha, M., Tang, K., Boonsena, N., & Pattanajak, A. (2024). The use of pattern blocks in developing students’ higher-order thinking skills. International Journal for Lesson and Learning Studies, 13(4), pp. 246-264. Retrieved February 6, 2025, from https://doi.org/10.1108/IJLLS-04-2023-0038
Cornish, F., Gillespie, A., & Zittoun, T. (2013). Collaborative analysis of qualitative data. In U. Flick (Ed.), The SAGE handbook of qualitative data analysis. New York: SAGE.
Creswell, J. W., & Poth, C. N. (2023). Qualitative inquiry and research design: Choosing among five approaches (5th ed.). Thousand Oaks, Canada: SAGE Publications.
Fujii, T. (2020). Misconceptions and alternative conceptions in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 625-627). Cham, Switzerland: Springer. Retrieved February 6, 2025, from https://doi.org/10.1007/978-3-030-15789-0_114
Hino, K. (2007). Toward the problem-centered classroom: Trends in mathematical problem solving in Japan. ZDM Mathematics Education, 39, pp. 503-514. Retrieved February 6, 2025, from https://doi.org/10.1007/s11858-007-0052-1
Inprasitha, M. (2022). Lesson study and open approach development in Thailand: a longitudinal study. International Journal for Lesson & Learning Studies, 11(5), pp. 1-15. Retrieved February 6, 2025, from https://doi.org/10.1108/IJLLS-04-2021-0029
Inprasitha, A., Changsri, N., & Inprasitha, M. (2024). An assessment of students’ mathematical competency through the mathematics festival. In The Asian Conference on Education 2023: Official Conference Proceedings (pp. 1577-1586). Tokyo, Japan: IAFOR. Retrieved February 6, 2025, from https://doi.org/10.22492/issn.2186-5892.2024.131
Intaros, P., & Inprasitha, M. (2019). How students’ mathematical ideas emerged through flow of lesson in classroom using lesson study and open approach. Psychology, 10(6), pp. 864-876. Retrieved February 6, 2025, from https://doi.org/10.4236/psych.2019.106056
Isoda, M. (Ed.). (1996). Problem-solving approach with diverse ideas and dialectic discussions: Conflict and appreciation based on the conceptual and procedural knowledge. Tokyo: Meijitosyo.
Isoda, M., & Katagiri, S. (2012). Mathematical thinking: How to develop it in the classroom. Singapore: World Scientific.
Mayring, P. (2022). Qualitative content analysis: A step-by-atep guide. New York: SAGE.
Ministry of Education Culture Sports Science and Technology. (2018). Explanation of the Secondary School Curriculum Guidelines, Mathematics Edition. Tokyo: Bunkyo.
National Research Council [NRC]. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academies Press.
Organisation for Economic Co-operation and Development [OECD]. (2023). PISA 2022 results (Volume I): The state of learning and equity in education. France: PISA, OECD. Retrieved February 6, 2025, from https://doi.org/10.1787/53f23881-en
Prakitipong, N., & Nakamura, S. (2006). Analysis of mathematics performance of grade five students in Thailand using Newman procedure. Journal of International Cooperation in Education, 9(1), pp. 111-122.
Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in Mathematics Education, 10(3), pp. 163-172. Retrieved February 6, 2025, from https://doi.org/10.2307/748804
Rasmussen, K., & Isoda, M. (2018). The intangible task-A revelatory case of teaching mathematical thinking in Japanese elementary schools. Research in Mathematics Education, 21(1), pp. 43-59. Retrieved February 6, 2025, from https://doi.org/10.1080/14794802.2018.1555714
Ryan, J., & Williams, J. (2007). Children’s mathematics 4-15: Learning from errors and misconceptions. United Kingdom: McGraw-Hill Education.
Smith, J. P., III, diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), pp. 115-163. Retrieved February 6, 2025, from https://www.jstor.org/stable/1466679
Takahashi, A. (2021). Teaching mathematics through problem-solving: A pedagogical approach from Japan. New York, NY: Routledge.
Wittmann, E. C. (2021). Connecting mathematics and mathematics education: Collected papers on mathematics education as a design science. Cham, Switzerland: Springer.