Data Science Applications in the Regulatory Impact Assessment

Authors

  • Peerapat Chokesuwattanaskul Faculty of Law, Chulalongkorn University
  • Sadanan Arsaibun Faculty of Arts, Chulalongkorn University
  • Attapol Thamrongrattanarit Faculty of Arts, Chulalongkorn University

Keywords:

artificial intelligence, data science, natural language processing, sentiment analysis, legal infomatics, public hearing, The Rules for Drafting Laws and Evaluating the Effectiveness of the Law Act B.E. 2562, regulatory impact assessment, topic modeling

Abstract

The Rules for Drafting Laws and Evaluating the Effectiveness of the Law Act B.E. 2562, issued in accordance with the principle of section 77 of the Constitution of the Kingdom of Thailand, has laid the principles for analysing the impact and evaluating the effectiveness of the law. It places great importance on the public hearing process by requiring responsible government agencies to conduct public hearings through the Central System. However, the resources and capability to thoroughly analyse the data vary across government agencies and contexts. Moreover, the analysis of language data is tremendously time- and resource-consuming, especially when compared with structured or quantitative data. Therefore, this paper presents a study method to extract insights from the unstructured public-hearing data using artificial intelligence and Natural Language Processing (NLP) knowledge. We exhibit the analysis by applying two NLP techniques to the Student Loan Fund Act B.E. 2560: Topic modeling and Sentiment analysis. This paper demonstrates the benefits and serves as guidelines to analyse the data collected from the public hearing process under the B.E. 2562 RIA Act and other potential contexts.

References

Alarie, Benjamin, Anthony Niblett, and Albert H. Yoon. ‘Using Machine Learning to Predict Outcomes in Tax Law’. Can. Bus. LJ 58 (2016): 231.

Albalawi, R., M. Benyoucef, and T.H. Yeap. ‘Using Topic Modeling Methods for Short-Text Data: A Comparative Analysis’, 2020. https://doi.org/10.3389/frai.2020.00042.

Aletras, N., D. Tsarapatsanis, D. Preotiuc-Pietro, and V. Lampos. ‘Predicting Judicial Decisions of the European Court of Human Rights: A Natural Language Processing Perspective’. PeerJ Computer Science 2:e93 (2016). https://doi.org/10.7717/peerj-cs.93.

Arun, R., V. Suresh, C. E. Veni Madhavan, and M. N. Narasimha Murthy. ‘On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations’. In Advances in Knowledge Discovery and Data Mining, edited by Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, and Vikram Pudi, 391–402. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-13657-3_43.

Bail, C. ‘Topic Modeling’, 2018. https://cbail.github.io/SICSS_Topic_Modeling.html.

Chalkidis, I., I. Androutsopoulos, and N. Aletras. ‘Neural Legal Judgment Prediction in English’. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4317–23. Florence, Italy: Association for Computational Linguistics, 2019. https://doi.org/10.18653/v1/P19-1424.

Collomb, A.A., L. Brunie, and C. Costea. ‘A Study and Comparison of Sentiment Analysis Methods for Reputation Evaluation’, 2013. https://www.semanticscholar.org/paper/A-Study-and-Comparison-of-Sentiment-Analysis-for-Collomb-Brunie/0e6e72c40f438c5c0e5c7ca47448d57e0a8c6e54.

Dunn, Matthew, Levent Sagun, Hale Sirin, and Daniel L. Chen. ‘Early Predictability of Asylum Court Decisions’. In Proceedings of the Association for Computing Machinery Conference on Artificial Intelligence and the Law, 2017. https://users.nber.org/~dlchen/papers/Early_Predictability_of_Asylum_Court_Decisions.pd.

Gandal, Neil, Michael Kende, and Rafael Rob. ‘The Dynamics of Technological Adoption in Hardware/Software Systems: The Case of Compact Disc Players’. The Rand Journal of Economics, 2000, 43–61.

Katz, D.M., Blackman Bommarito MJ, II, and J. ‘A General Approach for Predicting the Behavior of the Supreme Court of the United States’. PLoS ONE 12, no. 4 (2017): 0174698. https://doi.org/10.1371/journal.pone.0174698.

Khurana, D., A. Koli, K. Khatter, and S. Singh. ‘Natural Language Processing: State of the Art, Current Trends and Challenge’, 2017.

Kruglyak, I. ‘Natural Language Processing: Tasks and Application Areas’, 2020. https://www.avenga.com/magazine/natural-language-processing-application-areas/.

Melton, C.A., O.A. Olusanya, N. Ammar, and A. Shaban-Nejad. ‘Public Sentiment Analysis and Topic Modeling Regarding COVID-19 Vaccines on the Reddit Social Media Platform: A Call to Action for Strengthening Vaccine Confidence’. Journal of Infection and Public Health 14, no. 10 (2021): 1505–12.

Mimno, D. ‘Mimno’, 2008. https://mimno.github.io/Mallet/topics.

O’Neill, J., C. Robin, L. O’Brien, and P. Buitelaar. ‘An Analysis of Topic Modelling for Legislative Texts’. In ASAIL@ICAIL, 2017.

Parente, Stephen L., and Edward C. Prescott. ‘Barriers to Technology Adoption and Development’. Journal of Political Economy 102, no. 2 (1994): 298–321.

Poria, S., D. Hazarika, N. Majumder, and R. Mihalcea. ‘Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research’. IEEE Transactions on Affective Computing 1 (2020). https://doi.org/10.1109/TAFFC.2020.3038167.

Soh, J., H.K. Lim, and I.E. Chai. ‘Legal Area Classification: A Comparative Study of Text Classifiers on Singapore Supreme Court Judgments’. In Proceedings of the Natural Legal Language Processing Workshop 2019, 67–77. Minneapolis, Minnesota: Association for Computational Linguistics, 2019. https://doi.org/10.18653/v1/W19-2208.

Tomar, Ankur. ‘Topic Modeling Using Latent Dirichlet Allocation (LDA) and Gibbs Sampling Explained!’ Analytics Vidhya (blog), 25 July 2019. https://medium.com/analytics-vidhya/topic-modeling-using-lda-and-gibbs-sampling-explained-49d49b3d1045.

MonkeyLearn Blog. ‘Topic Modeling: An Introduction’, 26 September 2019. https://monkeylearn.com/blog/introduction-to-topic-modeling/.

โค้วสีหวัฒน์, กานกวิญจน์. ‘แบบจําลองคําทํานายผลคําตัดสินและประเด็นในคดีอาญาที่เรียนรู้จากคำพิพากษาฎีกาไทย โดยใช้เทคนิคการเรียนรู้เชิงลึก’, 2018.

พีรพัฒ โชคสุวัฒนสกุล และ อรรถพล ธำรงรัตนฤทธิ์. การวิเคราะห์คดีละเมิดด้วยปัญญาประดิษฐ์. กรุงเทพ, ประเทศไทย: สำนักงานวิจัยแห่งชาติ (วช.), 2565.

Downloads

Published

2023-06-30