APPLICATION OF KNOWLEDGE SPACE THEORY-BASED ADAPTIVE LEARNING PLATFORM (ALEKS) FOR IMPROVING THE STUDENTS’ MATHEMATICAL PROFICIENCY (THE CASE OF STAMFORD INTERNATIONAL UNIVERSITY)
Main Article Content
บทคัดย่อ
This research addresses the value of Knowledge Space Theory (KST) based on the teaching of computational subjects to business students. The research is a quasi-experiment involving an action implemented at Stamford International University, Thailand. A KST-based adaptive learning platform (ALEKS) was introduced in teaching mathematics at undergraduate level of business education. This paper seeks to answer the question of the new platform’s efficiency in preparing students for subsequent computational courses, and especially whether this relationship is strong for underperforming students. The action thus held at Stamford International University involved a sample of 340 students studying mathematics in the academic year 2018-2019, three trimesters in total, who either took a Pre-college Algebra course powered by ALEKS (treatment group) or did mandatory revision/preparatory tests (control group), which were not based on KST-tools. We analyzed their further grades and pass-fail rates in the subsequently taken subject of College Algebra. We find the action to be successful, the application of KST-based learning in mathematics significantly improves all students’ performance in subsequent computational subjects, but this relationship proves to be stronger for underperforming students. The work connects with the stream of literature on the efficiency of the use of KST-based tools in teaching and learning computational subjects at the college level.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
“ข้าพเจ้าและผู้เขียนร่วม (ถ้ามี) ขอรับรองว่า บทความที่เสนอมานี้ยังไม่เคยได้รับการตีพิมพ์และไม่ได้อยู่ระหว่างกระบวนการพิจารณาลงตีพิมพ์ในวารสารหรือแหล่งเผยแพร่อื่นใด ข้าพเจ้าและผู้เขียนร่วมยอมรับหลักเกณฑ์การพิจารณาต้นฉบับ ทั้งยินยอมให้กองบรรณาธิการมีสิทธิ์พิจารณาและตรวจแก้ต้นฉบับได้ตามที่เห็นสมควร พร้อมนี้ขอมอบลิขสิทธิ์บทความที่ได้รับการตีพิมพ์ให้แก่สถาบันการจัดการปัญญาภิวัฒน์หากมีการฟ้องร้องเรื่องการละเมิดลิขสิทธิ์เกี่ยวกับภาพ กราฟ ข้อความส่วนใดส่วนหนึ่งและ/หรือข้อคิดเห็นที่ปรากฏในบทความข้าพเจ้าและผู้เขียนร่วมยินยอมรับผิดชอบแต่เพียงฝ่ายเดียว”
References
Albert, D., & Hockemeyer, C. (1997). Adaptive and dynamic hypertext tutoring systems based on knowledge space theory. Artificial Intelligence in Education: Knowledge and Media in Learning Systems, 39, 553-555.
Albert, D., Hockemeyer, C., Kickmeier-Rust, M. D., Nussbaumer, A., & Steiner, C. M. (2011). E-learning based on metadata, ontologies and competence-based knowledge space theory. In Knowledge technology week (pp. 24-36). Springer, Berlin, Heidelberg.
Albert, D., Hockemeyer, C., Kickmeier-Rust, M. D., Peirce, N., & Conlan, O. (2007). Microadaptivity within complex learning situations—A personalized approach based on competence structures and problem spaces. In 15th International Conference on Computers in Education (pp. 25-27). ICCE.
Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school students’ challenges in computational thinking-based science learning. Research and Practice in Technology Enhanced Learning, 11(1), 1-35.
Bechtel, G. A., Davidhizar, R., & Bradshaw, M. J. (1999). Problem-based learning in a competencybased world. Nurse Education Today, 19(3), 182-187.
Burkhardt, H. (2007). Mathematical proficiency: What is important? How can it be measured? Assessing Mathematical Proficiency, 53, 77.
Chadi, A. M. (2017). Relationship between NCE III business education students computational skill and their Cumulative Grade Point Average (CGPA) in colleges of education in Bauchi and Gombe States. Journal of Education and E-Learning Research, 4(3), 118-121.
Conlan, O., O’Keeffe, I., Hampson, C., & Heller, J. (2006). Using knowledge space theory to support learner modeling and personalization. In E-Learn: World Conference on E-learning in Corporate, Government, Healthcare, and Higher Education (pp. 1912-1919). Association for the Advancement of Computing in Education (AACE).
Craig, S. D., Anderson, C., Bargagloitti, A., Graesser, A. C., Okwumabua, T., Sterbinsky, A., & Hu, X. (2011). Learning with ALEKS: The impact of students’ attendance in a mathematics after-school program. In International Conference on Artificial Intelligence in Education (pp. 435-437). Springer.
Craig, S. D., Hu, X., Graesser, A. C., Bargagliotti, A. E., Sterbinsky, A., Cheney, K. R., & Okwumabua, T. (2013). The impact of a technology-based mathematics after-school program using ALEKS on student’s knowledge and behaviors. Computers & Education, 68, 495-504.
Doignon, J. P., & Falmagne, J. C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23(2), 175-196.
Doignon, J. P., & Falmagne, J. C. (2016). Knowledge spaces and learning spaces. In New handbook of mathematical psychology (pp. 274-321). Cambridge University Press.
Doignon, J. P., Falmagne, J. C., & Regenwetter, M. (1999). Combinatoric and geometric aspects of some probabilistic choice models—A review. In M. J. Machina, & B. Munier (Eds.), Beliefs, interactions and preferences in decision making in theory and decision library (40) (pp. 179-203). Springer.
Dowling, C. E., & Hockemeyer, C. (2001). Automata for the assessment of knowledge. IEEE Transactions on Knowledge and Data Engineering, 13(3), 451-461.
Ganter, B., Bedek, M., Heller, J., & Suck, R. (2017). An invitation to knowledge space theory. In International Conference on Formal Concept Analysis (pp. 3-19). Springer, Cham.
Gribbons, B., & Herman, J. (1996). True and quasi-experimental designs. Practical Assessment, Research, and Evaluation, 5(1), 14.
Grove, W. A., Wasserman, T., & Grodner, A. (2006). Choosing a proxy for academic aptitude. The Journal of Economic Education, 37(2), 131-147.
Hagerty, G., & Smith, S. (2005). Using the web-based interactive software ALEKS to enhance college algebra. Mathematics & Computer Education, 39(3), 183-194.
Heller, J., Augustin, T., Hockemeyer, C., Stefanutti, L., & Albert, D. (2013). Recent developments in competence-based knowledge space theory. In Knowledge spaces (pp. 243-286). Springer.
Heller, J., Stefanutti, L., Anselmi, P., & Robusto, E. (2015). On the link between cognitive diagnostic models and knowledge space theory. Psychometrika, 80(4), 995-1019.
Heller, J., Steiner, C., Hockemeyer, C., & Albert, D. (2006). Competence-based knowledge structures for personalised learning. International Journal on E-learning, 5(1), 75-88.
Heller, J., Ünlü, A., & Albert, D. (2013). Skills, competencies and knowledge structures. In Knowledge spaces (pp. 229-242). Springer.
Henry, R., Nantongo, L., Wagner, A. K., Embrey, M., & Trap, B. (2017). Competency in supportive supervision: A study of public sector medicines management supervisors in Uganda. Journal of Pharmaceutical Policy and Practice, 10(1), 1-11.
Hockemeyer, C. (1997). Using the basis of a knowledge space for determining the fringe of a knowledge state. Journal of Mathematical Psychology, 41(3), 275-279.
Hockemeyer, C., Held, T., & Albert, D. (1997). A relational adaptive tutoring hypertext www-environment based on knowledge space theory. Computer Aided Learning and Instruction in Science and Engineering.
Hodge, K. A., & Lear, J. L. (2011). Employment skills for 21st century workplace: The gap between faculty and student perceptions. Journal of Career and Technical Education, 26(2), 28-41.
Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310.
Jhangiani, R. S., Chiang, I. A., & Price, P. C. (2015). Research methods in psychology (2nd ed.). BC Campus.
Kaiser, S. K. (2019). Employer reports of skills gaps in the workforce [Doctoral dissertation]. The University of Nebraska-Lincoln.
Khazanchi, R. (2021). Impact of Intelligent Tutoring System (ITS) on mathematics achievement using ALEKS. In International Conference on Artificial Intelligence in Education (pp. 471-475). Springer, Cham.
Kickmeier-Rust, M. D., & Albert, D. (2015). Competence-based knowledge space theory: Options for the 21st century classroom. In Measuring and visualizing learning in the information-rich classroom (pp. 125-136). Routledge.
Kickmeier-Rust, M. D., Hockemeyer, C., Albert, D., & Augustin, T. (2008). Micro adaptive, non-invasive knowledge assessment in educational games. In 2008 Second IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning (pp. 135-137). IEEE.
LaVergne, V., & South, S. M. (2007). The effect of the ALEKS web-based learning system on standardized math scores [Unpublished action research project]. Shawnee Mission Schools.
Lei, P. W., Bassiri, D., & Schultz, E. M. (2001). Alternatives to the grade point average as a measure of academic achievement in college. ACT Research Report Series.
Marte, B., Steiner, C. M., Heller, J., & Albert, D. (2008). Activity and taxonomy-based knowledge representation framework. International Journal of Knowledge and Learning, 4(2-3), 189-202.
Moursund, D. G. (2006). Computational thinking and math maturity: Improving math education in K-8 schools. D. Moursund.
Mills, N. J. (2021). ALEKS constructs as predictors of high school mathematics achievement for struggling students. Heliyon, 7(6), e07345.
Nwaogu, E. (2012). The effect of ALEKS on students’ mathematics achievement in an online learning environment and the cognitive complexity of the initial and final assessments. Georgia State University.
Pappas, M., & Drigas, A. (2016). Incorporation of artificial intelligence tutoring techniques in mathematics. International Journal of Engineering Pedagogy (IJEP), 6(4), 12.
Pei, C., Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75-89.
Rahayu, T., & Osman, K. (2019). Knowledge level and self-confidence on the computational thinking skills among science teacher candidates. Jurna Ilm. Pendidik. Fis. Al-Biruni, 8(1), 117-126.
Reimann, P., Kickmeier-Rust, M., & Albert, D. (2013). Problem solving learning environments and assessment: A knowledge space theory approach. Computers & Education, 64, 183-193.
Rienties, B., Tempelaar, D., Waterval, D., Rehm, M., & Gijselaers, W. (2006). Remedial online teaching on a summer course. Industry and Higher Education, 20(5), 327-336.
Rudakov, V., & Roshchin, S. (2019). The impact of student academic achievement on graduate salaries: The case of a leading Russian university. Journal of Education and Work, 32(2), 156-180.
Sanford, J. F., & Naidu, J. T. (2016). Computational thinking concepts for grade school. Contemporary Issues in Education Research (CIER), 9(1), 23-32.
Sanford, J. F., & Naidu, J. T. (2017). Mathematical modeling and computational thinking. Contemporary Issues in Education Research (CIER), 10(2), 158-168.
Schoenfeld, A. H. (2007). What is mathematical proficiency and how can it be assessed? Assessing Mathematical Proficiency, 53, 59.
Sitthisak, O., Gilbert, L., & Albert, D. (2013). Adaptive learning using an integration of competence model with knowledge space theory. In 2013 IIAI International Conference on Advanced Applied Informatics (IIAIAAI) (pp. 199-202). IEEE Computer Society.
Snalune, P. (2015). The benefits of computational thinking. ITNOW, 57(4), 58-59.
Steiner, C. M., Nussbaumer, A., & Albert, D. (2009). Supporting self-regulated personalised learning through competence-based knowledge space theory. Policy Futures in Education, 7(6), 645-661.
Stillson, H., & Alsup, J. (2003). Smart ALEKS... or not? Teaching basic algebra using an online interactive learning system. Mathematics and Computer Education, 37(3), 329.
Taagepera, M., & Noori, S. (2000). Mapping students’ thinking patterns in learning. Chemical Education Research, 77(9), 1224-1229.
Topphol, A. K. (2018). A correlation study of mathematics proficiency VS reading and spelling proficiency. Nordic Research in Mathematics Education, 17, 139.
Ünlü, A., Schrepp, M., Heller, J., Hockemeyer, C., Wesiak, G., & Albert, D. (2013). Recent developments in performance-based knowledge space theory. In Knowledge spaces: applications in education (pp. 147-192). Springer.
Voorhees, R. A. (2001). Competency-based learning models: A necessary future. New Directions for Institutional Research, (110), 5-13.
Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computers in a learning environment 2. The PS process: A review. Egyptian Computer Science Journal, 36(4), 28-46.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147.
Wing, J. M. (2006). Computational thinking. Communications of ACM, 3(49), 33-35.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.