Development Modelling Ability of Grade 10 Students in Biology Using Model-based Learning
Main Article Content
Abstract
This research aims to develop modelling ability of students after learning by model-based learning in biology. The target group of study is 36 grade 10 students who were studying in special big school in Roi-et province and they were studying second semester of academic year 2019. The target group was selected by purposive sampling. The research tools contain nine model-based learning lesson plans on topic chromosome and genetic materials and modelling ability evaluation form. Modelling ability contains 4 aspects including 1) construct models 2) use models 3) compare and evaluate 4) revise models. This is action research which contains four steps including 1) plan 2) act 3) observe 4) reflect. Three lesson planes were used for each cycle. the collected data was analyzed by arithmetic mean, percentage, and standard deviation. The research finding show that the score of modelling ability after studied by model-based learning in first cycle is 3.02 accounted for 75.38 percent. Constructing model is 3.71 which is the highest score of modelling ability aspects. The score of modelling ability in second cycle is 3.28 accounted for 82.12 percent. Using model is 3.57 which is the highest score of modelling ability aspects. Score of modelling ability in third cycle is 3.50 accounted for 87.50 percent. Constructing model is 3.86 which is the highest score of modelling ability aspects. In brief, model-based learning can develop modelling ability of target students, apply to use in suitable situation.
Article Details
1. เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชาการมหาวิทยาลัยราชภัฏศรีสะเกษ ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
2. บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชาการมหาวิทยาลัยราชภัฏศรีสะเกษ กองบรรณาธิการไม่สงวนสิทธิ์ในการคัดลอกบทความเพื่อการศึกษา แต่ให้อ้างอิงแหล่งที่มาให้ครบถ้วนสมบูรณ์
References
Americans: Project 2061(online). Available:
http://www.project2061.org/publications/sfaa/online/chap1.htm.
Accessed: [April 10, 2020]
Bryce, C., Baliga, V. B., de Nesnera, K., Fiack, D., Goetz, K., Tarjan, L. M., … Gilbert, G. S. (2016). Models in the NGSS biology classroom. American Biology Teacher, 78(1), 35–42.
Giere, R. N. (1988). Explaning science: A cognitive approach. Chicago: University of
Chicago Press.
Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education.
International Journal of Science and Mathematics Education, 2(2), 115–130.
Gobert, J. D., & Buckley, C. (2000). Introduction to model-based teaching and learning in
science education. International Journal of Science Education, 22(9),
891–894.
Kiatphimon, N., Chantraukrit, P., & Pollawatn, R. (2017). Effects of using representation
construction approach on modelling ability and learning achievement in biology
upper secondary school student. An Online Journal of Education,
(12)1, 188-203. [in Thai]
Ladachart, L., & Ladachart, L. (2017). Science teachers ’ perspectives on and
understandings about scientific models. Journal of Community Development
Research (Humanities and Social Science), 10(3), 149–162.
Martínez Solano, J. F. (2016). Wenceslao J. Gonzalez : Bas van Fraassen’s approach to
representation and models in science. Journal for General Philosophy
of Science, 47(1), 261–264.
Office of the Basic Education Commission. (2002). Classroom assessment guideline,
science department basic core curriculum B.C. 2544. Bangkok,
Express Transportation Organization of Thailand. [in Thai]
Ngamchat, P., & Termtachatipongsa, P. (2003). Scientific conceptual change and the
relationship between self-esteem and conceptual change on plant reproduction
of grade 11 students using conceptual change strategies. Journal of Education
Graduated Studies Research, 8(1). 164-171. [in Thai]
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: developing students’
understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.
Schwarz, C. V. (2009). A Learning Progression of Elementary Teachers’ Knowledge
and Practices for Model-Based Scientific Inquiry. In Aera (pp. 1–16).
Schweingruber, H. A., Keller, T. E., & Quinn, H. R. (2012). A Framework for K-12 science
education: practices, crosscutting concepts, and core Ideas K-12.
Washington: The National academies Press.
Supatchaiyawong, P., Faikhamta, C., & Potjanart Suwanruji. (2015). Using Model-based
learning for enhancing mental model of atomic structure and understandings of
the nature of model of 10th grade students. Journal of Learning Innovations
Walailak University, (1)1, 97-124. [in Thai]