HIGH PRESSURE FOOD PROCESSING: AN ALTERNATIVE TECHNOLOGY TO REDUCE FOOD ADDITIVES USED IN PROCESSED MEAT PRODUCTS
Main Article Content
บทคัดย่อ
Consumer behavior has changed dramatically nowadays that ready-to-eat foods are particularly popular choice than fresh or unprocessed foods. Therefore, food industries are growing rapidly to serve in variety of different choices to consumers, especially processed meats such as sausage, ham, bologna known as cured meats which is normally classified in a group of low-acid food and easily spoiled by microbial contamination. To control microbial growths in processed meats, food additives are most frequency added in forms of nitrite and nitrate. Consuming over the legal limit of nitrite and nitrate for 125 and 500 mg/kg, respectively can become a health risk or even death. Therefore, a technology of High Pressure Processing (HPP) is helped to inactivate microorganisms and stabilizes their growth during storage which reduces the need of food additives in processed meats. However, production cost is directly proportional to the level of pressure and time applied. Thus, a practical guidance to industrial pressure conditions affecting spoilage microorganisms in meat to extend the shelf life are in the range of 400-700 MPa combined with low to moderate temperature at 0-70 °C for 1-10 minutes. The potential benefits of HPP are maintaining product characteristics including color, flavor and texture.
พฤติกรรมของผู้บริโภคอาหารในปัจจุบันมีการเปลี่ยนแปลงไปมาก โดยอาหารพร้อมรับประทานได้รับความนิยมมากกว่าอาหารสดหรืออาหารที่ผ่านการแปรรูปต่ำ ทำให้อุตสาหกรรมอาหารในปัจจุบันได้เติบโตอย่างรวดเร็วเพื่อตอบสนองความต้องการที่หลากหลายของผู้บริโภคโดยเฉพาะเทคโนโลยีแปรรูปอาหารประเภทเนื้อสัตว์ เช่น ไส้กรอก แฮม โบโลน่า ซึ่งจัดอยู่ในกลุ่มผลิตภัณฑ์แปรรูปประเภทเนื้อหมักที่มีความเป็นกรดต่ำจึงเกิดการเสื่อมเสียจากจุลินทรีย์ได้ง่าย ผลิตภัณฑ์แปรรูปกลุ่มนี้จึงต้องใส่วัตถุกันเสีย เช่น ไนไตรท์และไนเตรท โดยปริมาณที่กฎหมายกำหนดไม่เกิน 125 และ 500 มิลลิกรัม/กิโลกรัม ตามลำดับ เพื่อควบคุมการเจริญของจุลินทรีย์และยืดอายุการเก็บรักษา หากบริโภคเกินมาตรฐานที่กำหนดจะเป็นอันตรายต่อสุขภาพหรือเสียชีวิตได้ เทคโนโลยีความดันสูงจึงถูกนำมาประยุกต์ใช้ในเนื้อสัตว์แปรรูปเพื่อลดปริมาณการใช้วัตถุกันเสีย แต่เนื่องจากต้นทุนการผลิตแปรผันตามระดับความดันและเวลาที่ใช้ ดังนั้นในทางอุตสาหกรรมจึงใช้ความดันอยู่ในช่วง 400-600 เมกกะปาสคาล ร่วมกับความร้อนต่ำถึงปานกลางในช่วงอุณหภูมิ 0-70 องศาเซลเซียส เป็นเวลา 1-10 นาที ซึ่งเพียงพอต่อการทำลายเชื้อจุลินทรีย์ที่ก่อให้เกิดการเน่าเสียเพื่อช่วยยืดอายุผลิตภัณฑ์ โดยที่ยังคงรักษาคุณภาพผลิตภัณฑ์ ทั้งในด้านสี กลิ่น รส และเนื้อสัมผัส
Article Details
“ข้าพเจ้าและผู้เขียนร่วม (ถ้ามี) ขอรับรองว่า บทความที่เสนอมานี้ยังไม่เคยได้รับการตีพิมพ์และไม่ได้อยู่ระหว่างกระบวนการพิจารณาลงตีพิมพ์ในวารสารหรือแหล่งเผยแพร่อื่นใด ข้าพเจ้าและผู้เขียนร่วมยอมรับหลักเกณฑ์การพิจารณาต้นฉบับ ทั้งยินยอมให้กองบรรณาธิการมีสิทธิ์พิจารณาและตรวจแก้ต้นฉบับได้ตามที่เห็นสมควร พร้อมนี้ขอมอบลิขสิทธิ์บทความที่ได้รับการตีพิมพ์ให้แก่สถาบันการจัดการปัญญาภิวัฒน์หากมีการฟ้องร้องเรื่องการละเมิดลิขสิทธิ์เกี่ยวกับภาพ กราฟ ข้อความส่วนใดส่วนหนึ่งและ/หรือข้อคิดเห็นที่ปรากฏในบทความข้าพเจ้าและผู้เขียนร่วมยินยอมรับผิดชอบแต่เพียงฝ่ายเดียว”
References
Alahakoon, A. U., Jayasena, D. D., Ramachandra, S. & Cheorun, J. (2015). Alternatives to nitrite in processed meat: up to date. Trends in Food Science & Technology, 45(1), 37-49.
Allais, I. (2010). Emulsification. In F. Toldrá (Ed.), Handbook of Meat Processing. Iwa: Wiley-Blackwell.
Anand, S. P. & Sati, N. (2013). Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. International Journal of Pharmaceutical Sciences and Research, 4(7), 2496-2501.
Balasubramaniam, V. M., Gustavo, V. B. & Huub, L. M. L. (2016). High-pressure processing equipment to the food industry. In Balasubramaniam, V. M., Gustavo, V. B. & Huub, L. M. L. (Eds.). High Pressure Processing of Food: Principles, Technology and Applications. New York: Springer.
Balasubramaniam, V. M., Martínez-Monteagudo, S. I. & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science and Technology, 6, 435-462.
Balda, F. P., Aparicio, B. V. & Samson, C. T. (2012). Industrial high pressure processing of foods: review of evolution and emerging trends. Journal of Food Science and Engineering, 2, 543-549.
Bryan, N. S. (2006). Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radical Biology & Medicine, 41(5), 691-701.
Campus, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineering Reviews, 2(4), 256-273.
Chapleau, N., Mangavel, C., Compoint, J. P. & de Lamballerie-Anton, M. (2003). Effect of high-pressure processing on myofibrillar protein structure. Journal of the Science of Food and Agriculture, 84(1), 66-74.
Crehan, C. M., Troy, D. J. & Uckley, D. J. (2000). Effects of salt level and high hydrostatic pressure processing on frankfurthers formulated with 1.5 and 2.5% salt. Meat Science, 55(1), 123-130.
de Oliveira, T. L. C., Ramos, A. L. S., Ramos, E. M., Piccoli, R. H. & Cristianini, M. (2015). Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends in Food Science & Technology, 45(1), 60-85.
Farkas, D. & Hoover, D. (2000). High pressure processing. In special supplement: kinetics of microbial inactivation for alternative processing technologies. Journal of Food Science Special Supplement, 65(8), 47-64.
FDA. (2013). Guidelines for the use of food additives and related law. Retrieved Jan 17, 2015, from http://iodinethailand.fda.moph.go.th/food/data/news/2556/560902/Update%20Food%20Additives.pdf
Garriga, M. & Aymerich, T. (2009). Advanced determination technologies: high hydrostatic pressure on meat products. In F. Toldrá (Ed.). Safety of Meat and Processed Meat. New York: Springer.
Garriga, M., Grébol, N., Aymerich, M. T., Monfort, J. M. & Hugas, M. (2004). Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technologies, 5, 451-457.
Ha, S. K. (2014). Dietary Salt Intake and Hypertension. Electrolyte and Blood Pressure, 12(1), 7-18.
Hong, G. P., Ko, S. H., Choi, M. J. & Min, S. G. (2008). Effect of glucono-d-lactone and k-carrageenan combined with high pressure treatment on the physicochemical properties of restructure pork. Meat Science, 79(2), 236-243.
Houška, M., Strohalm, J., Kocurová, K., Totušek, J., Lefnerová, D., Trsíska, J., Vrchotová, N., Fiedrleová, V., Holasova, M., Gabrovská, D. and Paulíčková, I. (2006). High pressure and foods—fruit/vegetable juices. Journal of Food Engineering, 77(3), 386-398.
Hugas, M., Garriga, M., & Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Meat Science, 62(3), 359-371.
Iwasaki, T., Noshiroya, K., Saitoh, N., Okano, K. & Yamamoto, K. (2006). Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chemistry, 95(3), 474-483.
Jofré, A., Aymerich, T., Grèbol, N. & Garriga, M. (2009). Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products. LWT - Food Science and Technology, 42(5), 924-928.
Jofré, A., Garriga, M. & Aymerich, T. (2008). Inhibition of Salmonella sp. Listeria monocytogenesand Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Science, 78(1-2), 53-59.
Jofré, A. & Serra, X. (2016). Processing of meat products utilizing high pressure. In Balasubramaniam, V. M., Gustavo, V. B. & Huub, L. M. L. (Eds.). High Pressure Processing of Food: Principles, Technology and Applications. New York: Springer.
Joye, S. (2014). High Pressure Processing (HPP) – prontier red meat development project. North Sydney NSW.
Kerry, J. P. & Kerry, J. F. (2011). Processed meat: Improving safety, nutrition and quality. Cambridge, UK: Woodhead Publishing Limited.
Keto-Timonen, R., Lindström, M., Puolanne, E., Niemistö, M. & Korkeala, H. (2012). Inhibition of toxigenesis of group II (nonproteolytic) Clostridium botulinum type B in meat products by using a reduced level of nitrite. Journal of Food Protection, 75(7), 1346-1349.
Marcos, B., Aymerich, T., Guardia, M. D. & Garriga, M. (2007). Assessment of high hydrostatic pressure and starter culture on the quality properties of low-acid fermented sausages. Meat Science, 76(1), 46-53.
Mor-Mur, M. & Yuste, J. (2003). High pressure processing applied to cooked sausage manufacturer: physical properties and sensory analysis. Meat Science, 65(3), 1187-1191.
Neetoo, H. & Chen, H. (2012). Application of high hydrostatic pressure technology for processing and preservation in foods. In Bhat, R., Alias, A. K. & Paliyath, G. (Eds.). Progress in Food Preservation. West Sussex: Blackwell Publishing.
Norton, T. & Sun, D. W. (2008). Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry. Food and Bioprocess Technology, 1(1), 2-34.
O’Flynn, C. C., Cruz-Romero, M. C., Troy, D. J., Mullen, A. M. & Kerry, J. P. (2014). The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages. Meat Science, 96(1), 633-639.
Ortega-Rivas, E. (2012). Non-thermal Food Engineering Operations. New York: Springer.
Parthasarathy, D. K. & Bryan, N. S. (2012). Sodium nitrite: the “cure” for nitric oxide insufficiency. Meat Science, 92(3), 274-279.
Ruiz-Capillas, C., Carballo, J. & Jiménez-Colmenero, F. (2007). Consequences of high-pressure processing of vacuum-packaged frankfurters on the formation of polyamines: effect of chilled storage. Food Chemistry, 104(1), 202-208.
Ruusunen, M. & Puolanne, E. (2005). Reducing sodium intake from meat products. Meat Science, 70(3), 531-541.
Sebranek, J. G. & Bacus, J. N. (2007). Cured meat products without direct addition of nitrate or nitrite: what are the issues?. Meat Science, 77(1), 136-147.
Shankar, R. (2014). High pressure processing- changes in quality characteristic of various food material processed under high pressure technology. International Journal of Innovation and Scientific Research, 3(2), 168-186.
Simonin, H., Duranton, F. & de Lamballerie, M. (2012). New insights into the High-Pressure Processing of meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 11(3), 285-306.
Supavititpatana, T. & Apichartsrangkoon, A. (2007). Combination effects of ultra-high pressure and temperature on the physical and thermal properties of ostrich meat sausage (yor). Meat Science, 76(3), 555-560.
Torres, J. A., Sanz, P., Otero, L., Pérez Lamela, C. & Saldaña, M. D. A. (2009). Engineering principles to improve food quality and safety by high pressure processing. In E. Ortega-Rivas (Ed.). Processing effects on safety and quality of foods. Boca Raton, FL: CRC Taylor & Francis, Inc.
Torres, J. A. & Velázquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1-2), 95-112.
Waratornpaibul, P. (2013). Consumption behavior: consumerism food and health-conscious food. Panyapiwat Journal, 5(2), 255-264.
Wuytack, E. Y., Diels, A. M. J. & Michiels, C. W. (2002). Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. International Journal of Food Microbiology, 77(3), 205-212.
Yordanov, D. G. & Angelova, G. V. (2010). High pressure processing for food preserving. Biotechnology & Biotechnological Equipment, 24(3), 1940-1945.