ประสบการณ์ความแม่นยำของปัญญาประดิษฐ์ผ่านการรู้คุณค่าอรรถประโยชน์ การรับรู้คุณค่าความรู้สึกของผู้บริโภคจังหวัดอุดรธานี

Main Article Content

อนุศักดิ์ รัตนกนกกาญจน์
กมลรัตน์ ป้อมสุวรรณ

บทคัดย่อ

การศึกษาครั้งนี้มุ่งเน้นตรวจสอบผลกระทบของเทคโนโลยี AI ที่ได้นำมาใช้บนแพลตฟอร์มซื้อขายสินค้าออนไลน์ ที่เกิดขึ้นกับความตั้งใจซื้อสินค้าออนไลน์ โดยมีวัตถุประสงค์ เพื่อศึกษาประสบการณ์ความแม่นยำของปัญญาประดิษฐ์ผ่านการรับรู้คุณค่าอรรถประโยชน์ การรับรู้คุณค่าความรู้สึกของผู้บริโภคจังหวัดอุดรธานีจำนวน 400 คน สุ่มตัวอย่างแบบหลายขั้นตอน เครื่องมือที่ใช้ในการวิจัย คือ แบบสอบถามมีลักษณะแบบมาตรวัดประมาณค่า 5 ระดับ วิเคราะห์ข้อมูลโดยสถิติเชิงอนุมานด้วยตัวแบบจำลองสมการโครงสร้างผลการวิจัยตามสมมติฐานของการศึกษา พบว่า 1) ประสบการณ์ด้านความแม่นยำของการตลาด AI บนแพลตฟอร์มซื้อขายสินค้าออนไลน์ มีอิทธิพลเชิงบวกต่อการรับรู้คุณค่าอรรถประโยชน์และคุณค่าความรู้สึกของผู้บริโภค 2) ทั้งการรับรู้คุณค่าอรรถประโยชน์และคุณค่าความรู้สึกของผู้บริโภคมีอิทธิพลเชิงบวกต่อความตั้งใจซื้อสินค้าออนไลน์ 3) การรับรู้คุณค่าความรู้สึกมีอิทธิพลเชิงบวกต่อความตั้งใจซื้อสินค้าออนไลน์มากกว่าการรับรู้คุณค่าอรรถประโยชน์

Article Details

How to Cite
รัตนกนกกาญจน์ อ., & ป้อมสุวรรณ ก. (2024). ประสบการณ์ความแม่นยำของปัญญาประดิษฐ์ผ่านการรู้คุณค่าอรรถประโยชน์ การรับรู้คุณค่าความรู้สึกของผู้บริโภคจังหวัดอุดรธานี. วารสารบริหารธุรกิจและศิลปศาสตร์ ราชมงคลล้านนา, 12(2), 59–84. สืบค้น จาก https://so05.tci-thaijo.org/index.php/balajhss/article/view/273325
บท
บทความวิจัย

References

Adwan, A. A., & Aladwan, R. (2022). Use of Artificial intelligence system to predict consumers' behaviors. International Journal of Data andNetwork Science, 6(2), 1223-1232.

AI Thailand. (2022). Thailand national AI strategy and action plan (2022 – 2027). AI Thailand. Retrieved May 3, 2024, from https://ai.in.th/en/about-ai-thailand/

Angsucharit, S., Wijitwannakul, S., & Koolpiriya, R. (2014). Statistical Analysis for Social Sciences and Behavioral Sciences: LISREL Program Utilization Techniques. Bangkok: Charoendee Manokong Printing.

Avcilar, M. Y., & Özsoy, T. (2015). Determining the effects of perceived utilitarian and hedonic value on online shopping intentions. International Journal of Marketing Studies, 7(2), 27-49.

Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: Measuring hedonic and utilitarian shopping value. Journal of Consumer Research, 20(4), 644-656.

Bangkok Post. (2024). Consumers embracing generative AI. Retrieved March 3, 2024, from https://www.bangkokpost.com/business/general/2703681/consumers-embracing-generative-ai

Barry, J., Babin., William, R., Darden., & Mitch, Griffin. (1994). Work and/or Fun: Measuring Hedonic and Utilitarian Shopping Value. Journal of Consumer Research, 20(4), 644-656.

Batra, R., & Ahtola, O. T. (1991). Measuring the hedonic and utilitarian sources of consumer attitudes. Marketing Letters, 2(2), 159-170.

Berg, N., & Kinghts, M. (2019). Amazon: How the world's most relentless retailer will continue to revolutionize commerce (pp. 167-175). CITIC Press Group.

Bhagat, R., Chauhan, V., & Bhagat, P. (2023). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight, 25(2), 249-263.

Byrne, B. M. (2010). Structural equation modeling with Amos. (2nd ed.). Routledge.

Cara, R. (2021). Impact of artificial intelligence and perceived value on online purchase intention. Final International University.

Carlota, L. R., Alarcón-del-Amo, M. C., & Gómez-Borja, M. Á. (2016). Analyzing the User Behavior toward Electronic Commerce Stimuli. Frontiers in Behavioral Neuroscience, 10(13), 1-18.

Chu, T. (2018). A Study on Selection Intention of Consumers' Online Shopping Channel Based on SOR Theory: Official Websites and Third-Party Flagship Stores as Examples. (Beijing University of Posts and Telecommunications). China: Beijing.

Chiu, C. M., Hsieh, Y. H., Kao, Y. H., & Lee, M. (2007). The determinants of email receivers' disseminating behaviors on the Internet. Journal of Advertising Research, 47(4), 524-534.

Chiu, C. M., Wang, E. T., Fang, Y. H., & Huang, H. Y. (2014). Understanding customers' repeat purchase intentions in B2C e‐commerce: the roles of utilitarian value, hedonic value and perceived risk. Information Systems Journal, 24(1), 85-114.

Christian, P., Pedersen, T., George, H., Harris, T., Beck, T., & Nilsson, S. H. (2023). The role of dark pattern stimuli and personality in online impulse shopping: An application of S‐O‐R theory. Journal of Consumer Behaviour, 22(16), 1311-1329.

Chung, N., Akhtar, M., & Raine, J. (2020). The next frontier in marketing intelligence: Artificial intelligence for marketing analytics. In Marketing Intelligence and Analytics (pp. 137-156). World Scientific.

Cronbach, L. J. (1984). Essentials of psychological testing. (4th ed.). New York, NY: Harper & Row.

Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24-42.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35, 982–1003.

Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers' product evaluations. Journal of Marketing Research, 28(3), 307-319.

Donovan, R.J., & Rossiter, J.R. (1982). Store atmosphere: An environmental psychology approach. Journal of Retailing, 58(1), 34–57.

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71.

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., & Wright, R. (2023). Personalized marketing using AI in e-commerce. International Journal of Information Management, 63, 102456.

Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2001). Atmospheric qualities of online retailing: A conceptual model and implications. Journal of Business Research, 54(2), 177–184.

Floh, A., & Madlberger, M. (2013). The role of atmospheric cues in online impulse-buying behavior. Electronic Commerce Research and Applications, 12(6), 425–439.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1). 39-50.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. (7th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

Hernandez, B., Jimenez, J., & Martin, M. J. (2020). AI-powered chatbots in online shopping. Journal of Business Research, 112, 1-10.

Holbrook, M. B. (1999). Consumer value: A framework for analysis and research. Psychology Press.

Holbrook, M. B., & Hirschman, E. C. (1982). The experiential aspects of consumption: Consumer fantasies, feelings, and fun. Journal of Consumer Research, 9(2), 132-140.

Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172.

Jiang, L., Jun, M., & Yang, Z. (2016). Customer-perceived value and loyalty: how do key service quality dimensions matter in the context of B2C e-commerce?. Service Business, 10(2), 301-317.

Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34, 111-117.

Keng, C. J., Huang, T. L., Zheng, L. J., & Hsu, M. K. (2007). Modeling service encounters and customer experiential value in retailing. International Journal of Service Industry Management, 18(4), 349-367.

Kline, R. B. (2011). Principles and practice of structural equation modeling. (3rd ed.). Guilford Press.

Kline, R. B. (1998). Principles and practice of structural equation modeling. (2nd ed.). NewYork: Guilford Press.

Kumar, C. M., & Senthilmurugan, T. (2024). Impact on online purchasing behavior: The influence of artificial intelligence. Kuey, 30(5), 3277-3280.

Kumar, Venkatesan, & Lecinski. (2019). Understanding the Role of Artificial Intelligence in Personalized Engagement Marketing. California Management Review, 61(4), 1-21.

Liu, X., Wang, Y., & Liu, Y. (2019). The mediating effect of perceived value between product information push and consumer purchase behavior: Multiple intermediary analysis based on bootstrap method. Modern Business, 9(1), 41-43.

Lorenzo-Romero, C., Alarcón-del-Amo, M. D., & Gómez-Borja, M. Á. (2016). Analyzing the user behavior toward electronic commerce stimuli. Frontiers in Behavioral Neuroscience, 10, 224.

Mathwick, C., Malhotra, N., & Rigdon, E. (2001). Experiential value: Conceptualization, measurement and application in the catalog and Internet shopping environment. Journal of Retailing, 77(1), 39-56.

Mehrabian, A., & Russell, J. A. (1974). An Approach to Environmental Psychology. MIT Press.

Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230.

Mussa, M. H. (2020). The impact of artificial intelligence on consumer behaviors: An applied study on the online retailing sector in Egypt. The Scientific Journal of Economics and Commerce, 50(4), 293-318.

National Statistical Office of Thailand. (2021). Population Census of Udon Thani Province. Retrieved August 24, 2023, From http://www.nso.go.th/sites/2014/Pages/pop/สำมะโนประชากร.aspx

NECTEC. (2023). Thailand plans six new projects as part of its national AI strategy. Retrieved March 19, 2024, From https://www.itnews.asia/news/thailand-plans-six-new-projects-as-part-of-its-national-ai-strategy-606000

Necula, S.-C., & Păvăloaia, V.-D. (2023). AI-driven recommendations: A systematic review of the state of the art in e-commerce. Applied Sciences, 13(9), 5531.

Overby, J. W., & Lee, E.-J. (2006). The effects of utilitarian and hedonic online shopping value on consumer preference and intentions. Journal of Business Research, 59(10-11), 1160-1166.

Overgoor, G., Chica, M., & William, R. (2019). Letting the computers take over: Using AI to solve marketing problems. California Management Review, 8, 1-30.

Pappas, N. (2016). Marketing strategies, perceived risks, and consumer trust in online buying behaviour. Journal of Retailing and Consumer Services, 29, 92-103.

Recombee. (2024). AI-Powered Real-Time Recommender. Retrieved March 22, 2024, from https://www.recombee.com

Roggeveen, A. L., Grewal, D., Townsend, C., & Krishnan, R. (2020). The impact of dynamic data-driven AI-powered marketing communications on consumer engagement. Journal of Marketing, 84(6), 123-145.

Song, Y., Yang, S., Huang, Z., & Huang, T. (2019). The application of artificial intelligence in electronic commerce. Journal of Physics: Conference Series, 1302(3), 032030.

Statista. (2024). Generative AI - Thailand | Statista Market Forecast. Retrieved March 22, 2024, From https://www.statista.com/outlook/tmo/

Tandon, U., Kiran, R., & Sah, A. N. (2017). The influence of website functionality, drivers and perceived benefits on creating consumer satisfaction and positive e-WOM intentions. European Journal of Business and Management, 9(15), 41-53.

The Bureau of Registration Administration. (2022). Population Statistics of the Civil Registration System. Retrieved August 26, 2023, From https://stat. bora.dopa.go.th/

Trabelsi, M. A. (2024). The impact of artificial intelligence on economic development. Journal of Electronic Business & Digital Economics. ISSN: 2754-4214.

Vero. (2024). Thailand recap: A look back at the major AI drama of 2023. Retrieved March 12, 2024, From https://vero-asean.com/thailand-recap-a-look-back-at-the-major-ai-drama-of-2023/artificial-intelligence/generative-ai/

Wagner, G., Lukyanenko, R., & Paré, G. (2022). Artificial intelligence and the conduct of literature reviews. Journal of Information Technology, 37(2), 209-226.

Wang, C., Liu, T., Zhu, Y., Wang, H., Wang, X., & Zhao, S. (2023). The influence of consumer perception on purchase intention: Evidence from cross-border E-commerce platforms. Heliyon, 9(11), e21617.

DOI:10.1016/j.heliyon.2023.e21617

Wu, L. Y., Chen, K. Y., Chen, P. Y., & Cheng, S. L. (2014). Perceived value, transaction cost, and repurchase-intention in online shopping: A relational exchange perspective. Journal of Business Research, 67(1), 2768-2776.

Yamane, T. (1973). Statistics: An Introductory Analysis. (3rd Edition). Harper and Row, New York

Yang, L. (2009). Effects of Online Store Atmosphere on Consumer Purchase Intention. China: Chongqing University.

Yin, J., & Qiu, X. (2021). AI technology and online purchase intention: Structural equation model based on perceived value. Sustainability, 13(10), 5671.

Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2-22.

Zhang, Y., Lv, W., & Zhang, J. (2019). Marketing Research of AI: Prospect and Challenges. Journal of Management Science, 32(5), 75-86.