• Somkiat Leelataweewud Business Administration Program, Dhurakij Pundit University


Cloud Computing, Driving Factors, Key Performance Indicators and Thai Business


In recent years, many organizations are facing with problems of technology adoption such as scalable infrastructure, high total cost of ownership, long-term maintenance, inefficient operations and lack of skilled IT persons. If they cannot achieve the business goals, it will be impact on their competitive advantage. Emerging of cloud computing is the one of the technology alternatives with enabling ubiquitous and on-demand network access with using internet to a shared resources in term of infrastructure, platform and software to support their business operation efficiently. However, the adoption of cloud computing in Thai firms is not widespread because it is new technology. And also there are fewer researches to study about the causes and the success. Therefore, the purposes of this research were to investigate the driving factors which are the causes of cloud adoption, to derive the key performance indicators for measurement, and to examine and to confirm both of factors and indicators. The mixed method research was used in this study. Firstly, the qualitative research was implemented; the researcher conducted an in-depth interview for data preparation. After that, a Delphi method was utilized based on 25 experts who are the executives having knowledge and experience in cloud adoption. The data analysis in this step was Median and Interquartile Range to conclude the final consensus from experts and then developed the questionnaire for the next step, a quantitative part. A sample surveys of 402 organizations to examine all factors and indicators from the proposed model. The data is analyzed using descriptive statistics and Analysis of Variance (ANOVA) and using Sheffé method in the step of multiple comparisons. The results of this study indicated that there are 4 factors that drive cloud adoption and they consist of technology, external environment, internal environment, and management’s characteristic. In addition, it found that there are 4 perspectives for key performance indicator of cloud adoption and they are composed of financial perspective, stakeholder perspective, internal process perspective and learning and growth perspective. And it showed that there are consistency in factors and perspectives between samples and experts. Furthermore, it was found that small organizations have the highest means of driving factors such as executives’ knowledge, relative advantage, scalability, effectiveness, and market opportunity. And it was further found that the mean of external driving factor and the mean of key performance indicator for learning and growth were different in case different firm size with significant at the 0.01 level. In summary, this research has identified the factors and indicators on the adoption of cloud computing. A proposed conceptual framework’s model has developed to describe and explain the drivers and success measures of cloud adoption for business organization in order to strengthen the competitive advantage and to create high performance in organization.


Download data is not yet available.


นิตยา วงศ์ภินันท์วัฒนา. (2551). การวัดประโยชน์จากการใช้เทคโนโลยีสารสนเทศของวิสาหกิจขนาดกลางและขนาดย่อม. วารสารบริหารธุรกิจมหาวิทยาลัยธรรมศาสตร์, 31(119), 9-31.

ศรีสมรัก อินทุจันทร์ยง. (2553). การประมวลผลแบบคลาวด์. วารสารบริหารธุรกิจมหาวิทยาลัยธรรมศาสตร์, 33, 128. น. 14-21.

อุบลศิลป์ โพธิ์พรม, ประสงค์ ปราณีตพลกรัง, เปรื่อง กิจรัตน์ภร และชุณหพงศ์ ไทยอุปถัมภ์. (2553). การพัฒนาดัชนีชี้วัดความสำเร็จของการบริหารจัดการด้านเทคโนโลยีสารสนเทศและการสื่อสาร. วารสารพัฒนบริหารศาสตร์, 50(3), น. 149-170.

สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ. (2556). แนวทางการพัฒนาการให้บริการ Cloud Computing ในประเทศไทย. เอกสารประกอบงานสัมมนาแนวคิด หลักการ และการใช้ประโยชน์จากเทคโนโลยีสารสนเทศและการสื่อสารแบบระบบเมฆ (น. 1-32). กรุงเทพฯ: โรงแรมเซ็นจูรี่พาร์ค.

สำนักงานสถิติแห่งชาติ. (2555). สำรวจการมีการใช้เทคโนโลยีสารสนเทศและการสื่อสารในสถานประกอบการ. สืบค้น 1 สิงหาคม 2556 จาก http://www.service.nso.go.thv/

ศูนย์วิจัยกสิกรไทย. (2556). แนวโน้มธุรกิจบริการ CLOUD COMPUTING ปีมะเส็ง: เติบโตแข็งแกร่งจากปัจจัยหนุนรอบด้าน. กระแสทรรศน์,19(2321), 1-3. สืบค้น 15 มีนาคม 2555, จาก http://www.kasikornresearch.com/

Al-Hudhaif, S. & Abdullah, A. (2011). E-Commerce Adoption Factors in Saudi Arabia. International Journal of Business and Management, 6(9). pp. 122-133.

Business Software Alliance, BSA. (2012). BSA Global Cloud Computing Scorecard A Blueprint for Economic Opportunity. Retrieved April 1, 2013, from http://www.bsa.org/

Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3). pp. 319–340.

Dalkey, N.C. & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3).

Ekufu, TG. K. (2012). Predicting Cloud Computing Technology Adoption By Organizations: An Empirical Integration Of Technology Acceptance Model And Theory Of Planned Behavior. Doctor of Philosophy. Minnesota: Capella University.

Grance, T. & Mell, P. (2011). The NIST Definition of Cloud Computing. Retrieved May 15, 2013, from http://www.dl.acm.org/

Hailu, A. (2012). Factors Influencing-Computing Technology Adoption In Developing Countries. Doctor of Philosophy. Minnesota: Capella University.

ISACA (2011). COBIT 5: Process Reference Guide Exposure Draft. pp. 1-16. Illinois: USA Kaplan, R. S. & Norton, D. P. (1996). Balance Scorecard. Boston, Massachusetts: Harvard Business School Press.

Macmillan, T. T. (1971). The Delphi Technique. In Paper presented at the annual meeting of the California junior college associations committee on research and development, Monterey, California.

Low, C., Chen, Y. & Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial Management & Data Systems, 111(7). pp. 1006-1023.

Opala, O. J. (2012). An Analysis Of Security, Cost-Effectiveness, And IT Compliance Factors Influencing Cloud Adoption By IT Managers. Doctor of Philosophy. Minnesota: Capella University.

Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. New York: The Free Press.

Powelson, S. E. (2012). An Examination of Small Businesses’ Propensity to Adopt Cloud-Computing Innovation. Doctor of Business Administration. Minnesota: Walden University.

Rogers, E. M. (2003). Diffusion of Innovations. (5th Ed). New York: The Free Press.

Stefen, F. Claudia, L. & Christoph, R. (2013). Key Performance Indicators for Cloud Computing SLAs. Retrieved May 15, 2013, from http://www.thinkmind.org/

Tornatzky, L. & Fleischer, M. (1990). The process of Technology Innovation. Lexington, MA, Lexington Books.



How to Cite

Leelataweewud, S. (2020). DRIVING FACTORS FOR SUCCESSFUL CLOUD ADOPTION IN THAI BUSINESS. Suthiparithat, 28(88), 118–144. Retrieved from https://so05.tci-thaijo.org/index.php/DPUSuthiparithatJournal/article/view/244783



Research Articles